
AAppendix

BSD UNIX

This Chapter was first written in 1991 and has been modified over time

In Chapter 18, we presented an in-depth examination of the Linux operating
system. In this chapter, we examine another popular UNIX version—UnixBSD.
We start by presenting a brief history of the UNIX operating system. We then
describe the system’s user and programmer interfaces. Finally, we discuss the
internal data structures and algorithms used by the FreeBSD kernel to support
the user–programmer interface.

A.1 UNIX History

The first version of UNIX was developed in 1969 by Ken Thompson of the
Research Group at Bell Laboratories to use an otherwise idle PDP-7. Thompson
was soon joined by Dennis Ritchie and they, with other members of the
Research Group, produced the early versions of UNIX.

Ritchie had previously worked on the MULTICS project, and MULTICS had
a strong influence on the newer operating system. Even the name UNIX is a
pun on MULTICS. The basic organization of the file system, the idea of the
command interpreter (or the shell) as a user process, the use of a separate
process for each command, the original line-editing characters (# to erase the
last character and @ to erase the entire line), and numerous other features came
directly from MULTICS. Ideas from other operating systems, such as MIT’s CTSS
and the XDS-940 system, were also used.

Ritchie and Thompson worked quietly on UNIX for many years. They
moved it to a PDP-11/20 for a second version; for a third version, they
rewrote most of the operating system in the systems-programming language
C, instead of the previously used assembly language. C was developed at Bell
Laboratories to support UNIX. UNIX was also moved to larger PDP-11 models,
such as the 11/45 and 11/70. Multiprogramming and other enhancements
were added when it was rewritten in C and moved to systems (such as the
11/45) that had hardware support for multiprogramming.

As UNIX developed, it became widely used within Bell Laboratories and
gradually spread to a few universities. The first version widely available

1

2 Appendix A BSD UNIX

outside Bell Laboratories was Version 6, released in 1976. (The version number
for early UNIX systems corresponds to the edition number of the UNIX
Programmer’s Manual that was current when the distribution was made; the
code and the manual were revised independently.)

In 1978, Version 7 was distributed. This UNIX system ran on the PDP-11/70
and the Interdata 8/32 and is the ancestor of most modern UNIX systems.
In particular, it was soon ported to other PDP-11 models and to the VAX
computer line. The version available on the VAX was known as 32V. Research
has continued since then.

A.1.1 UNIX Support Group

After the distribution of Version 7 in 1978, the UNIX Support Group (USG)
assumed administrative control and responsibility from the Research Group
for distributions of UNIX within AT&T, the parent organization for Bell Labora-
tories. UNIX was becoming a product, rather than simply a research tool. The
Research Group continued to develop their own versions of UNIX, however, to
support their internal computing. Version 8 included a facility called the stream
I/O system, which allows flexible configuration of kernel IPC modules. It also
contained RFS, a remote file system similar to Sun’s NFS. The current version is
Version 10, released in 1989 and available only within Bell Laboratories.

USG mainly provided support for UNIX within AT&T. The first external
distribution from USG was System III, in 1982. System III incorporated features
of Version 7 and 32V, as well as features of several UNIX systems developed
by groups other than Research. For example, features of UNIX/RT, a real-time
UNIX system, and numerous portions of the Programmer’s Work Bench (PWB)
software tools package were included in System III.

USG released System V in 1983; it is largely derived from System III. The
divestiture of the various Bell operating companies from AT&T left AT&T in
a position to market System V aggressively. USG was restructured as the
UNIX System Development Laboratory (USDL), which released UNIX System
V Release 2 (V.2) in 1984. UNIX System V Release 2, Version 4 (V.2.4) added
a new implementation of virtual memory with copy-on-write paging and
shared memory. USDL was in turn replaced by AT&T Information Systems
(ATTIS), which distributed System V Release 3 (V.3) in 1987. V.3 adapts the V8
implementation of the stream I/O system and makes it available as STREAMS.
It also includes RFS, the NFS-like remote file system mentioned earlier.

A.1.2 Berkeley Begins Development

The small size, modularity, and clean design of early UNIX systems led to
UNIX-based work at numerous other computer-science organizations, such as
Rand, BBN, the University of Illinois, Harvard, Purdue, and DEC. The most
influential UNIX development group outside of Bell Laboratories and AT&T,
however, has been the University of California at Berkeley.

Bill Joy and Ozalp Babaoglu did the first Berkeley VAX UNIX work in 1978.
They added virtual memory, demand paging, and page replacement to 32V
to produce 3BSD UNIX. This version was the first to implement any of these
facilities on a UNIX system. The large virtual memory space of 3BSD allowed
the development of very large programs, such as Berkeley’s own Franz LISP.
The memory-management work convinced the Defense Advanced Research

A.1 UNIX History 3

Projects Agency (DARPA) to fund Berkeley for the development of a standard
UNIX system for government use; 4BSD UNIX was the result.

The 4BSD work for DARPA was guided by a steering committee that included
many notable people from the UNIX and networking communities. One of the
goals of this project was to provide support for the DARPA Internet networking
protocols (TCP/IP). This support was provided in a general manner. It is
possible in 4.2BSD to communicate uniformly among diverse network facilities,
including local-area networks (such as Ethernets and token rings) and wide-
area networks (such as NSFNET). This implementation was the most important
reason for the current popularity of these protocols. Many vendors of UNIX
computer systems used it as the basis for their implementations, and it was
even used in other operating systems. It permitted the Internet to grow from
60 connected networks in 1984 to more than 8,000 networks and an estimated
10 million users in 1993.

In addition, Berkeley adapted many features from contemporary operating
systems to improve the design and implementation of UNIX. Many of the
terminal line-editing functions of the TENEX (TOPS-20) operating system were
provided by a new terminal driver. A new user interface (the C Shell), a new text
editor (ex/vi), compilers for Pascal and LISP, and many new systems programs
were written at Berkeley. For 4.2BSD, certain efficiency improvements were
inspired by the VMS operating system.

UNIX software from Berkeley was released in Berkeley Software Distri-
butions (BSD). It is convenient to refer to the Berkeley VAX UNIX systems
following 3BSD as 4BSD, but there were actually several specific releases, most
notably 4.1BSD and 4.2BSD; 4.2BSD, first distributed in 1983, was the culmination
of the original Berkeley DARPA UNIX project. The equivalent version for PDP-11
systems was 2.9BSD.

In 1986, 4.3 BSD was released. It was very similar to 4.2BSD but included
numerous internal changes, such as bug fixes and performance improvements.
Some new facilities were also added, including support for the Xerox Network
System protocols.

The next version was 4.3 BSD Tahoe, released in 1988. It included improved
networking congestion control and TCP/IP performance. Disk configurations
were separated from the device drivers and read off the disks themselves.
Expanded time-zone support was also included. 4.3 BSD Tahoe was actually
developed on and for the CCI Tahoe system (Computer Console, Inc., Power
6 computer), rather than for the usual VAX base. The corresponding PDP-11
release was 2.10.1BSD; it was distributed by the USENIX association, which also
published the 4.3 BSD manuals. The 4.3.2 BSD Reno release saw the inclusion of
an implementation of ISO/OSI networking.

The last Berkeley release, 4.4BSD, was finalized in June of 1993. It included
new X.25 networking support and POSIX standard compliance. It also had a
radically new file system organization, with a new virtual file system interface
and support for stackable file systems, allowing file systems to be layered on
top of each other for easy inclusion of new features. An implementation of
NFS was included in the release (Section 12.8), along with a new log-based file
system (see Chapter 10). The 4.4BSD virtual memory system was derived from
Mach (described in Section 20.13. Several other changes, such as enhanced
security and improved kernel structure, were also included. With the release
of version 4.4, Berkeley halted its research efforts.

4 Appendix A BSD UNIX

A.1.3 The Spread of UNIX

UNIX| 4BSD was the operating system of choice for the VAX from its ini-
tial release (in 1979) until the release of Ultrix, DEC’s BSD implementation.
Indeed,4BSD is still the best choice for many research and networking instal-
lations. The current set of UNIX operating systems is not limited to those
from Bell Laboratories (which is currently owned by Lucent Technology) and
Berkeley, however. Sun Microsystems helped popularize the BSD flavor of
UNIX by shipping it on Sun workstations. As UNIX grew in popularity, it was
moved to many computers and computer systems. A wide variety of UNIX
and UNIX-like operating systems have been created. DEC supports its UNIX
(Ultrix) on its workstations and is replacing Ultrix with another UNIX-derived
operating system, OSF/1. Microsoft rewrote UNIX for the Intel 8088 family and
called it XENIX, and its Windows NT operating system was heavily influenced
by UNIX. IBM has UNIX (AIX) on its PCs, workstations, and mainframes. In fact,
UNIX is available on almost all general-purpose computers. It runs on personal
computers, workstations, minicomputers, mainframes, and supercomputers,
from Apple Macintosh IIs to Cray IIs. Because of its wide availability, it is used
in environments ranging from academic to military to manufacturing process
control. Most of these systems are based on Version 7, System III, 4.2BSD, or
System V.

The wide popularity of UNIX with computer vendors has made UNIX the
most portable of operating systems, and users can expect a UNIX environment
independent of any specific computer manufacturer. But the large number
of implementations of the system has led to remarkable variation in the
programming and user interfaces distributed by the vendors. For true vendor
independence, application-program developers need consistent interfaces.
Such interfaces would allow all “UNIX” applications to run on all UNIX
systems, which is certainly not the current situation. This issue has become
important as UNIX has become the preferred program-development platform
for applications ranging from databases to graphics and networking, and it has
led to a strong market demand for UNIX standards.

Several standardization projects have been undertaken. The first was the
/usr/group 1984 Standard, sponsored by the UniForum industry user’s group.
Since then, many official standards bodies have continued the effort, including
IEEE and ISO (the POSIX standard). The X/Open Group international consortium
completed XPG3, a Common Application Environment, which subsumes the
IEEE interface standard. Unfortunately, XPG3 is based on a draft of the ANSI C
standard, rather than the final specification, and therefore needed to be redone
as XPG4. In 1989, the ANSI standards body standardized the C programming
language, producing an ANSI C specification that vendors were quick to adopt.

As such projects continue, the flavors of UNIX will converge and lead
to one programming interface to UNIX, allowing UNIX to become even more
popular. In fact, two separate sets of powerful UNIX vendors are working on
this problem: The AT&T-guided UNIX International (UI) and the Open Software
Foundation (OSF) have both agreed to follow the POSIX standard. Recently,
many of the vendors involved in those two groups have agreed on further
standardization (the COSE agreement).

AT&T replaced its ATTIS group in 1989 with the UNIX Software Organization
(USO), which shipped the first merged UNIX, System V Release 4. This system

A.1 UNIX History 5

1969

1973

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

USG/USDL/ATTIS
DSG/USO/USL

Bell Labs
Research

Berkley
Software

Distributions

First Edition

Fifth Edition

Sixth Edition

PWB

3.0

3.0.1

4.0.1

5.0

5.2 System V

System III

MERT CB UNIX

UNIX/RT

2.10BSD

2.9BSD
4.1cBSD

4.1aBSD
2.8BSD

2BSD

4.0BSD

3BSD

1BSD

32V

Solaris

Solaris 2

SunOS 4

SunOS 3

SunOS

Eighth
Edition

Ninth
Edition

Tenth
Edition

Plan 9

4.4BSD

4.3BSD
Reno

4.3BSD
Tahoe

4.3BSD

Seventh Edition

Chorus

Chorus
V3

System V
Release 3

System V
Release 2

XENIX

XENIX 3

XENIX 5

OSF/1

Mach

4.2BSD

4.1BSD

UNIX
System V
Release 4

VAX

PDP-11PDP-11

VAX

Figure A.1 History of UNIX versions up to 1993.

combines features from System V, 4.3 BSD, and Sun’s SunOS, including long file
names, the Berkeley file system, virtual memory management, symbolic links,
multiple access groups, job control, and reliable signals; it also conforms to
the published POSIX standard, POSIX.1. After USO produced SVR4, it became an
independent AT&T subsidiary named Unix System Laboratories (USL); in 1993,
it was purchased by Novell, Inc. Figure A.1 summarizes the relationships
among the various versions of UNIX.

The UNIX system has grown from a personal project of two Bell Laboratories
employees to an operating system defined by multinational standardization
bodies. At the same time, UNIX is an excellent vehicle for academic study, and
we believe it will remain an important part of operating-system theory and

6 Appendix A BSD UNIX

practice. For example, the Tunis operating system, the Xinu operating system,
and the Minix operating system are based on the concepts of UNIX but were
developed explicitly for classroom study. There is a plethora of ongoing UNIX-
related research systems, including Mach, Chorus, Comandos, and Roisin.
The original developers, Ritchie and Thompson, were honored in 1983 by the
Association for Computing Machinery Turing Award for their work on UNIX.

A.1.4 History of FreeBSD

The specific UNIX version used in this chapter is the Intel version of FreeBSD.
This system implements many interesting operating-system concepts, such as
demand paging with clustering, as well as networking. The FreeBSD project
began in early 1993 to produce a snapshot of 386 BSD to solve problems that
could not be resolved using the existing patch mechanism. 386 BSD was derived
from 4.3 BSD-Lite (Net/2) and was released in June 1992 by William Jolitz.
FreeBSD (coined by David Greenman) 1.0 was released in December 1993, and
FreeBSD 1.1 was released in May 1994. Both versions were based on 4.3 BSD-Lite.
Legal issues between UCB and Novell required that 4.3 BSD-Lite code no longer
be used, so the final 4.3 BSD-Lite release was made in July 1994 (FreeBSD 1.1.5.1).

FreeBSD was then reinvented based on 4.4BSD-Lite code, which was incom-
plete. FreeBSD 2.0 was released in November 1994. Later releases included 2.0.5
in June 1995, 2.1.5 in August 1996, 2.1.7.1 in February 1997, 2.2.1 in April 1997,
2.2.8 in November 1998, 3.0 in October 1998, 3.1 in February 1999, 3.2 in May
1999, 3.3 in September 1999, 3.4 in December 1999, 3.5 in June 2000, 4.0 in March
2000, 4.1 in July 2000, and 4.2 in November 2000.

The goal of the FreeBSD project is to provide software that can be used for
any purpose with no strings attached. The idea is that the code will get the
widest possible use and provide the most benefit. At present, it runs primarily
on Intel platforms, although Alpha platforms are supported. Work is underway
to port to other processor platforms as well.

A.2 Design Principles

UNIX was designed to be a time-sharing system. The standard user interface
(the shell) is simple and can be replaced by another, if desired. The file system
is a multilevel tree, which allows users to create their own subdirectories. Each
user data file is simply a sequence of bytes.

Disk files and I/O devices are treated as similarly as possible. Thus, device
dependencies and peculiarities are kept in the kernel as much as possible. Even
in the kernel, most of them are confined to the device drivers.

UNIX supports multiple processes. A process can easily create new pro-
cesses. CPU scheduling is a simple priority algorithm. FreeBSD uses demand
paging as a mechanism to support memory-management and CPU-scheduling
decisions. Swapping is used if a system is suffering from excess paging.

Because UNIX was originated by Thompson and Ritchie as a system for their
own convenience, it was small enough to understand. Most of the algorithms
were selected for simplicity, not for speed or sophistication. The intent was to
have the kernel and libraries provide a small set of facilities that was sufficiently

A.2 Design Principles 7

powerful to allow a person to build a more complex system if needed. UNIX’s
clean design has resulted in many imitations and modifications.

Although the designers of UNIX had a significant amount of knowledge
about other operating systems, UNIX had no elaborate design spelled out before
its implementation. This flexibility appears to have been one of the key factors
in the development of the system. Some design principles were involved,
however, even though they were not made explicit at the outset.

The UNIX system was designed by programmers for programmers. Thus,
it has always been interactive, and facilities for program development have
always been a high priority. Such facilities include the program make (which
can be used to check which of a collection of source files for a program need to be
compiled and then to do the compiling) and the Source Code Control System
(SCCS) (which is used to keep successive versions of files available without
having to store the entire contents of each step). The primary version-control
system used by UNIX is the Concurrent Versions System (CVS) due to the large
number of developers operating on and using the code.

The operating system is written mostly in C, which was developed to
support UNIX, since neither Thompson nor Ritchie enjoyed programming in
assembly language. The avoidance of assembly language was also necessary
because of the uncertainty about the machines on which UNIX would be run. It
has greatly simplified the problems of moving UNIX from one hardware system
to another.

From the beginning, UNIX development systems have had all the UNIX
sources available online, and the developers have used the systems under
development as their primary systems. This pattern of development has
greatly facilitated the discovery of deficiencies and their fixes, as well as
of new possibilities and their implementations. It has also encouraged the
plethora of UNIX variants existing today, but the benefits have outweighed the
disadvantages. If something is broken, it can be fixed at a local site; there is
no need to wait for the next release of the system. Such fixes, as well as new
facilities, may be incorporated into later distributions.

The size constraints of the PDP-11 (and earlier computers used for UNIX)
have forced a certain elegance. Where other systems have elaborate algorithms
for dealing with pathological conditions, UNIX just does a controlled crash
called panic. Instead of attempting to cure such conditions, UNIX tries to prevent
them. Where other systems would use brute force or macro-expansion, UNIX
mostly has had to develop more subtle, or at least simpler, approaches.

These early strengths of UNIX produced much of its popularity, which in
turn produced new demands that challenged those strengths. UNIX was used
for tasks such as networking, graphics, and real-time operation, which did
not always fit into its original text-oriented model. Thus, changes were made
to certain internal facilities, and new programming interfaces were added.
Supporting these new facilities and others—particularly window interfaces
—required large amounts of code, radically increasing the size of the system.
For instance, both networking and windowing doubled the size of the system.
This pattern in turn pointed out the continued strength of UNIX—whenever a
new development occurred in the industry, UNIX could usually absorb it but
remain UNIX.

8 Appendix A BSD UNIX

A.3 Programmer Interface

Like most operating systems, UNIX consists of two separable parts: the kernel
and the systems programs. We can view the UNIX operating system as being
layered, as shown in Figure A.2. Everything below the system-call interface and
above the physical hardware is the kernel. The kernel provides the file system,
CPU scheduling, memory management, and other operating-system functions
through system calls. Systems programs use the kernel-supported system calls
to provide useful functions, such as compilation and file manipulation.

System calls define the programmer interface to UNIX. The set of systems
programs commonly available defines the user interface. The programmer and
user interface define the context that the kernel must support.

Most systems programs are written in C, and the UNIX Programmer’s
Manual presents all system calls as C functions. A system program written in C
for FreeBSD on the Pentium can generally be moved to an Alpha FreeBSD system
and simply recompiled, even though the two systems are quite different. The
details of system calls are known only to the compiler. This feature is a major
reason for the portability of UNIX programs.

System calls for UNIX can be roughly grouped into three categories: file
manipulation, process control, and information manipulation. In Chapter 2,
we listed a fourth category, device manipulation, but since devices in UNIX are
treated as (special) files, the same system calls support both files and devices
(although there is an extra system call for setting device parameters).

A.3.1 File Manipulation

A file in UNIX is a sequence of bytes. Different programs expect various levels
of structure, but the kernel does not impose a structure on files. For instance,
the convention for text files is lines of ASCII characters separated by a single
newline character (which is the linefeed character in ASCII), but the kernel
knows nothing of this convention.

(the users)

shells and commands
compilers and interpreters

system libraries

system-call interface to the kernel

kernel interface to the hardware

file system
swapping block I/O

system
disk and tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

signals terminal
handling

character I/O system
terminal drivers

device controllers
disks and tapes

memory controllers
physical memory

terminal controllers
terminals

Figure A.2 4.4BSD layer structure.

A.3 Programmer Interface 9

Files are organized in tree-structured directories. Directories are themselves
files that contain information on how to find other files. A path name to a file
is a text string that identifies a file by specifying a path through the directory
structure to the file. Syntactically, it consists of individual file-name elements
separated by the slash character. For example, in /usr/local/font, the first slash
indicates the root of the directory tree, called the root directory. The next
element, usr, is a subdirectory of the root, local is a subdirectory of usr, and font
is a file or directory in the directory local. Whether font is an ordinary file or a
directory cannot be determined from the path-name syntax.

The UNIX file system has both absolute path names and relative path
names. Absolute path names start at the root of the file system and are
distinguished by a slash at the beginning of the path name; /usr/local/font is
an absolute path name. Relative path names start at the current directory,
which is an attribute of the process accessing the path name. Thus, local/font
indicates a file or directory named font in the directory local in the current
directory, which might or might not be /usr.

A file may be known by more than one name in one or more directories.
Such multiple names are known as links, and all links are treated equally
by the operating system. FreeBSD also supports symbolic links, which are files
containing the path name of another file. The two kinds of links are also known
as hard links and soft links. Soft (symbolic) links, unlike hard links, may point
to directories and may cross file-system boundaries.

The file name “.” in a directory is a hard link to the directory itself. The file
name “..” is a hard link to the parent directory. Thus, if the current directory is
/user/jlp/programs, then ../bin/wdf refers to /user/jlp/bin/wdf.

Hardware devices have names in the file system. These device special
files or special files are known to the kernel as device interfaces, but they are
nonetheless accessed by the user by much the same system calls as are other
files.

Figure A.3 shows a typical UNIX file system. The root (/) normally contains
a small number of directories as well as /kernel, the binary boot image of the
operating system; /dev contains the device special files, such as /dev/console,
/dev/lp0, /dev/mt0, and so on; and /bin contains the binaries of the essential
UNIX systems programs. Other binaries may be in /usr/bin (for applications
systems programs, such as text formatters), /usr/compat (for programs from
other operating systems, such as Linux), or /usr/local/bin (for systems programs
written at the local site). Library files—such as the C, Pascal, and FORTRAN
subroutine libraries—are kept in /lib (or /usr/lib or /usr/local/lib).

The files of users themselves are stored in a separate directory for each
user, typically in /usr. Thus, the user directory for carol would normally be in
/usr/carol. For a large system, these directories may be further grouped to ease
administration, creating a file structure with /usr/prof/avi and /usr/staff/carol.
Administrative files and programs, such as the password file, are kept in /etc.
Temporary files can be put in /tmp, which is normally erased during system
boot, or in /usr/tmp.

Each of these directories may have considerably more structure. For
example, the font-description tables for the troff formatter for the Merganthaler
202 typesetter are kept in /usr/lib/troff/dev202. All the conventions concerning
the location of specific files and directories have been defined by programmers

10 Appendix A BSD UNIX

bin troff

spell

ucb man

telnet

local lib

bin

include

lib
troff

tmac

tmp

vmunix

dev

lib

user

etc

tmp

console

lp0

sh

csh

libc.a

usr

jlp

avi

passwd

group

init

bin

/

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Figure A.3 Typical UNIX directory structure.

and their programs. The operating-system kernel needs only /etc/init, which is
used to initialize terminal processes, to be operable.

System calls for basic file manipulation are creat(), open(), read(),
write(), close(), unlink(), and trunc(). The creat() system call, given

A.3 Programmer Interface 11

a path name, creates an empty file (or truncates an existing one). An existing
file is opened by the open() system call, which takes a path name and a mode
(such as read, write, or read–write) and returns a small integer, called a file
descriptor. The file descriptor may then be passed to a read() or write()
system call (along with a buffer address and the number of bytes to transfer) to
perform data transfers to or from the file. A file is closed when its file descriptor
is passed to the close() system call. The trunc() call reduces the length of a
file to 0.

A file descriptor is an index into a small table of open files for this process.
Descriptors start at 0 and seldom get higher than 6 or 7 for typical programs,
depending on the maximum number of simultaneously open files.

Each read() or write() updates the current offset into the file, which is
associated with the file-table entry and is used to determine the position in
the file for the next read() or write(). The lseek() system call allows the
position to be reset explicitly. It also allows the creation of sparse files (files with
“holes” in them). The dup() and dup2() system calls can be used to produce
a new file descriptor that is a copy of an existing one. The fcntl() system
call can also do that and in addition can examine or set various parameters of
an open file. For example, it can make each succeeding write() to an open
file append to the end of that file. There is an additional system call, ioctl(),
for manipulating device parameters. It can set the baud rate of a serial port or
rewind a tape, for instance.

Information about the file (such as its size, protection modes, owner, and
so on) can be obtained by the stat() system call. Several system calls allow
some of this information to be changed: rename() (change file name), chmod()
(change the protection mode), and chown() (change the owner and group).
Many of these system calls have variants that apply to file descriptors instead
of file names. The link() system call makes a hard link for an existing file,
creating a new name for an existing file. A link is removed by the unlink(())
system call; if it is the last link, the file is deleted. The symlink() system call
makes a symbolic link.

Directories are made by the mkdir() system call and are deleted by
rmdir(). The current directory is changed by cd().

Although the standard file calls (open() and others) can be used on
directories, it is inadvisable to do so, since directories have an internal structure
that must be preserved. Instead, another set of system calls is provided to open
a directory, to step through each file entry within the directory, to close the
directory, and to perform other functions; these are opendir(), readdir(),
closedir(), and others.

A.3.2 Process Control

A process is a program in execution. Processes are identified by their process
identifier, which is an integer. A new process is created by the fork() system
call. The new process consists of a copy of the address space of the original
process (the same program and the same variables with the same values). Both
processes (the parent and the child) continue execution at the instruction after
the fork() with one difference: the return code for the fork() is zero for the
new (child) process, whereas the (nonzero) process identifier of the child is
returned to the parent.

12 Appendix A BSD UNIX

Typically, the execve() system call is used after a fork by one of the two
processes to replace that process’s virtual memory space with a new program.
The execve() system call loads a binary file into memory (destroying the
memory image of the program containing the execve() system call) and starts
its execution.

A process may terminate by using the exit() system call, and its parent
process may wait for that event by using the wait() system call. If the child
process crashes, the system simulates the exit() call. The wait() system call
provides the process ID of a terminated child so that the parent can tell which of
possibly many children terminated. A second system call, wait3(), is similar
to wait() but also allows the parent to collect performance statistics about the
child. Between the time the child exits and the time the parent completes one of
the wait() system calls, the child is defunct. A defunct process can do nothing
but exists merely so that the parent can collect its status information. If the
parent process of a defunct process exits before a child, the defunct process is
inherited by the init process (which in turn waits on it) and becomes a zombie
process. A typical use of these facilities is shown in Figure A.4.

The simplest form of communication between processes is by pipes. A pipe
may be created before the fork(), and its endpoints are then set up between
the fork() and the execve(). A pipe is essentially a queue of bytes between
two processes. The pipe is accessed by a file descriptor, like an ordinary file.
One process writes into the pipe, and the other reads from the pipe. The size
of the original pipe system was fixed by the system. With FreeBSD pipes are
implemented on top of the socket system, which has variable-sized buffers.
Reading from an empty pipe or writing into a full pipe causes the process to be
blocked until the state of the pipe changes. Special arrangements are needed
for a pipe to be placed between a parent and child (so only one is reading and
one is writing).

All user processes are descendants of one original process, called init
(which has process identifier 1). Each terminal port available for interactive use
has agettyprocess forked for it byinit. Thegettyprocess initializes terminal
line parameters and waits for a user’s login name, which it passes through an
execve() as an argument to a login process. The login process collects the
user’s password, encrypts it, and compares the result to an encrypted string
taken from the file /etc/passwd. If the comparison is successful, the user is
allowed to log in. The login process executes a shell, or command interpreter,
after setting the numeric user identifier of the process to that of the user logging
in. (The shell and the user identifier are found in /etc/passwd by the user’s login

shell process parent process shell process

child process zombie process

execve
program

program executes
exit

waitfork

Figure A.4 A shell forks a subprocess to execute a program.

A.3 Programmer Interface 13

name.) It is with this shell that the user ordinarily communicates for the rest
of the login session. The shell itself forks subprocesses for the commands the
user tells it to execute.

The user identifier is used by the kernel to determine the user’s permissions
for certain system calls, especially those involving file accesses. There is also
a group identifier, which is used to provide similar privileges to a collection
of users. In FreeBSD a process may be in several groups simultaneously. The
login process puts the shell in all the groups permitted to the user by the files
/etc/passwd and /etc/group.

Two user identifiers are used by the kernel: the effective user identifier and
the real user identifier. The effective user identifier is used to determine file
access permissions. If the file of a program being loaded by an execve() has
the setuid bit set in its inode, the effective user identifier of the process is set
to the user identifier of the owner of the file, whereas the real user identifier
is left as it was. This scheme allows certain processes to have more than
ordinary privileges while still being executable by ordinary users. The setuid
idea was patented by Dennis Ritchie (U.S. Patent 4,135,240) and is one of the
distinctive features of UNIX. A similar setgid bit exists for groups. A process
may determine its real and effective user identifier with the getuid() and
geteuid() calls, respectively. The getgid() and getegid() calls determine
the process’s real and effective group identifier, respectively. The rest of a
process’s groups may be found with the getgroups() system call.

A.3.3 Signals

Signals are a facility for handling exceptional conditions similar to software
interrupts. There are 20 different signals, each corresponding to a distinct
condition. A signal may be generated by a keyboard interrupt, by an error in
a process (such as a bad memory reference), or by a number of asynchronous
events (such as timers or job-control signals from the shell). Almost any signal
may also be generated by the kill() system call.

The interrupt signal, SIGINT, is used to stop a command before that
command completes. It is usually produced by the ˆC character (ASCII 3). As
of 4.2BSD, the important keyboard characters are defined by a table for each
terminal and can be redefined easily. The quit signal, SIGQUIT, is usually
produced by the ˆbs character (ASCII 28). The quit signal both stops the
currently executing program and dumps its current memory image to a file
named core in the current directory. The core file can be used by debuggers.
SIGILL is produced by an illegal instruction and SIGSEGV by an attempt to
address memory outside of the legal virtual memory space of a process.

Arrangements can be made either for most signals to be ignored (to have
no effect) or for a routine in the user process (a signal handler) to be called. A
signal handler may safely do one of two things before returning from catching
a signal: call the exit() system call or modify a global variable. One signal
(the kill signal, number 9, SIGKILL) cannot be ignored or caught by a signal
handler. SIGKILL is used, for example, to kill a runaway process that is ignoring
other signals such as SIGINT and SIGQUIT.

Signals can be lost. If another signal of the same kind is sent before a
previous signal has been accepted by the process to which it is directed, the
first signal will be overwritten, and only the last signal will be seen by the

14 Appendix A BSD UNIX

process. In other words, a call to the signal handler tells a process that there
has been at least one occurrence of the signal. Also, there is no relative priority
among UNIX signals. If two different signals are sent to the same process at the
same time, we cannot know which one the process will receive first.

Signals were originally intended to deal with exceptional events. As is true
with most UNIX features, however, signal use has steadily expanded. 4.1BSD
introduced job control, which uses signals to start and stop subprocesses on
demand. This facility allows one shell to control multiple processes—starting,
stopping, and backgrounding them as the user wishes. The SIGWINCH signal,
invented by Sun Microsystems, is used for informing a process that the window
in which output is being displayed has changed size. Signals are also used to
deliver urgent data from network connections.

Users wanted more reliable signals and a bug fix in an inherent race
condition in the old signal implementation. Thus, 4.2BSD brought with it a race-
free, reliable, separately implemented signal capability. It allows individual
signals to be blocked during critical sections, and it has a new system call
to let a process sleep until interrupted. It is similar to hardware-interrupt
functionality. This capability is now part of the POSIX standard.

A.3.4 Process Groups

Groups of related processes frequently cooperate to accomplish a common
task. For instance, processes may create, and communicate over, pipes. Such
a set of processes is termed a process group, or a job. Signals may be sent to
all processes in a group. A process usually inherits its process group from its
parent, but the setpgrp() system call allows a process to change its group.

Process groups are used by the C shell to control the operation of multiple
jobs. Only one process group may use a terminal device for I/O at any time.
This foreground job has the attention of the user on that terminal, while all
other nonattached jobs (background jobs) perform their functions without user
interaction. Access to the terminal is controlled by process group signals.
Each job has a controlling terminal (again, inherited from its parent). If the
process group of the controlling terminal matches the group of a process, that
process is in the foreground and is allowed to perform I/O. If a nonmatching
(background) process attempts the same, a SIGTTIN or SIGTTOU signal is sent to
its process group. This signal usually causes the process group to freeze until
it is foregrounded by the user, at which point it receives a SIGCONT signal,
indicating that the process can perform the I/O. Similarly, a SIGSTOP may be
sent to the foreground process group to freeze it.

A.3.5 Information Manipulation

System calls exist to set and return both an interval timer
(getitimer()/setitimer()) and the current time (gettimeof-
day()/settimeofday()) in microseconds. In addition, processes can
ask for their process identifier (getpid()), their group identifier (getgid()),
the name of the machine on which they are executing (gethostname()), and
many other values.

A.4 User Interface 15

A.3.6 Library Routines

The system-call interface to UNIX is supported and augmented by a large
collection of library routines and header files. The header files provide the
definition of complex data structures used in system calls. In addition, a large
library of functions provides additional program support.

For example, the UNIX I/O system calls provide for the reading and writing
of blocks of bytes. Some applications may want to read and write only 1 byte
at a time. Although possible, that would require a system call for each byte—a
very high overhead. Instead, a set of standard library routines (the standard I/O
package accessed through the header file <stdio.h>) provides another interface,
which reads and writes several thousand bytes at a time using local buffers
and transfers between these buffers (in user memory) when I/O is desired.
Formatted I/O is also supported by the standard I/O package.

Additional library support is provided for mathematical functions, net-
work access, data conversion, and so on. The FreeBSD kernel supports over 300
system calls; the C program library has over 300 library functions. The library
functions eventually result in system calls where necessary (for example, the
getchar() library routine will result in a read() system call if the file buffer is
empty). However, the programmer generally does not need to distinguish
between the basic set of kernel system calls and the additional functions
provided by library functions.

A.4 User Interface

Both the programmer and the user of a UNIX system deal mainly with the set
of systems programs that have been written and are available for execution.
These programs make the necessary system calls to support their function, but
the system calls themselves are contained within the program and do not need
to be obvious to the user.

The common systems programs can be grouped into several categories;
most of them are file or directory oriented. For example, the systems programs
to manipulate directories are mkdir to create a new directory, rmdir to remove
a directory, cd to change the current directory to another, and pwd to print the
absolute path name of the current (working) directory.

The ls program lists the names of the files in the current directory. Any of
28 options can ask that properties of the files be displayed also. For example,
the -l option asks for a long listing showing the file name, owner, protection,
date and time of creation, and size. The cp program creates a new file that is a
copy of an existing file. The mv program moves a file from one place to another
in the directory tree. In most cases, this move simply requires a renaming of
the file. If necessary, however, the file is copied to the new location, and the old
copy is deleted. A file is deleted by the rm program (which makes an unlink()
system call).

To display a file on the terminal, a user can run cat. The cat program takes
a list of files and concatenates them, copying the result to the standard output,
commonly the terminal. On a high-speed cathode-ray tube (CRT) display, of
course, the file may speed by too fast to be read. The more program displays
the file one screen at a time, pausing until the user types a character to continue

16 Appendix A BSD UNIX

to the next screen. The head program displays just the first few lines of a file;
tail shows the last few lines.

These are the basic systems programs widely used in UNIX. In addition,
there are a number of editors (ed, sed, emacs, vi, and so on), compilers (C,
python, FORTRAN, and so on), and text formatters (troff, TEX, scribe, and so on).
There are also programs for sorting (sort) and comparing files (cmp, diff),
looking for patterns (grep, awk), sending mail to other users (mail), and many
other activities.

A.4.1 Shells and Commands

Both user-written and systems programs are normally executed by a command
interpreter. The command interpreter in UNIX is a user process like any other.
As noted earlier, it is called a shell—because it surrounds the kernel of the
operating system. Users can write their own shells, and, in fact, several shells
are in general use. The Bourne shell, written by Steve Bourne, is probably the
most widely used—or, at least, the most widely available. The C shell, mostly
the work of Bill Joy, a founder of Sun Microsystems, is the most popular on
BSD systems. The Korn shell, by Dave Korn, has become popular because it
combines the features of the Bourne shell and the C shell.

The common shells share much of their command-language syntax. UNIX
is normally an interactive system. The shell indicates its readiness to accept
another command by typing a prompt, and the user types a command on a
single line. For instance, in the line

% ls -l

the percent sign is the usual C shell prompt, and the ls -l (typed by the user)
is the (long) list-directory command. Commands can take arguments, which
the user types after the command name on the same line, separated by white
space (spaces or tabs).

Although a few commands are built into the shells (such as cd), a typical
command is an executable binary object file. A list of several directories, the
search path, is kept by the shell. For each command, each of the directories
in the search path is searched, in order, for a file of the same name. If a file is
found, it is loaded and executed. The search path can be set by the user. The
directories /bin and /usr/bin are almost always in the search path, and a typical
search path on a FreeBSD system might be

(. /usr/avi/bin /usr/local/bin /bin /usr/bin)

The ls command’s object file is /bin/ls, and the shell itself is /bin/sh (the Bourne
shell) or /bin/csh (the C shell).

Execution of a command is done by a fork() system call followed by an
execve() of the object file. The shell usually then does a wait() to suspend
its own execution until the command completes (Figure A.4). There is a simple
syntax (an ampersand [&] at the end of the command line) to indicate that
the shell should not wait for the completion of the command. A command left
running in this manner while the shell continues to interpret further commands

A.4 User Interface 17

is said to be a background command, or to be running in the background.
Processes for which the shell does wait are said to run in the foreground.

The C shell in FreeBSD systems provides a facility called job control
(partially implemented in the kernel), as mentioned previously. Job control
allows processes to be moved between the foreground and the background.
The processes can be stopped and restarted on various conditions, such as a
background job wanting input from the user’s terminal. This scheme allows
most of the control of processes provided by windowing or layering interfaces
but requires no special hardware. Job control is also useful in window systems,
such as the X Window System developed at MIT. Each window is treated
as a terminal, allowing multiple processes to be in the foreground (one per
window) at any one time. Of course, background processes may exist on any
of the windows. The Korn shell also supports job control, and job control (and
process groups) will likely be standard in future versions of UNIX.

A.4.2 Standard I/O

Processes can open files as they like, but most processes expect three file
descriptors (numbers 0, 1, and 2) to be open when they start. These file
descriptors are inherited across the fork() (and possibly the execve()) that
created the process. They are known as standard input (0), standard output
(1), and standard error (2). All three are frequently open to the user’s terminal.
Thus, the program can read what the user types by reading standard input,
and the program can send output to the user’s screen by writing to standard
output. The standard-error file descriptor is also open for writing and is used
for error output; standard output is used for ordinary output. Most programs
can also accept a file (rather than a terminal) for standard input and standard
output. The program does not care where its input is coming from and where
its output is going. This is one of the elegant design features of UNIX.

The common shells have a simple syntax for changing what files are open
for the standard I/O streams of a process. Changing a standard file is called
I/O redirection. The syntax for I/O redirection is shown in Figure A.5. In this
example, the ls command produces a listing of the names of files in the current
directory, the pr command formats that list into pages suitable for a printer, and
the lpr command spools the formatted output to a printer, such as /dev/lp0. The

command meaning of command

% ls > filea direct output of ls to file filea

% pr < filea > fileb

% lpr < fileb

% % make program > & errs

input from filea and output to fileb

input from fileb

save both standard output and
standard error in a file

Figure A.5 Standard /io/ redirection.

18 Appendix A BSD UNIX

subsequent command forces all output and all error messages to be redirected
to a file. Without the ampersand, error messages appear on the terminal.

A.4.3 Pipelines, Filters, and Shell Scripts

The first three commands of Figure A.5 could have been coalesced into the one
command

% ls | pr | lpr

Each vertical bar tells the shell to arrange for the output of the preceding
command to be passed as input to the following command. A pipe is used to
carry the data from one process to the other. One process writes into one end
of the pipe, and another process reads from the other end. In the example, the
write end of one pipe would be set up by the shell to be the standard output of
ls, and the read end of the pipe would be the standard input of pr. Another
pipe would be between pr and lpr.

A command such as pr that passes its standard input to its standard output,
performing some processing on it, is called a filter. Many UNIX commands can
be used as filters. Complicated functions can be pieced together as pipelines of
common commands. Also, common functions, such as output formatting, do
not need to be built into numerous commands, because the output of almost
any program can be piped through pr (or some other appropriate filter).

Both of the common UNIX shells are also programming languages, with
shell variables and the usual higher-level programming-language control con-
structs (loops, conditionals). The execution of a command is analogous to a
subroutine call. A file of shell commands, a shell script, can be executed like
any other command, with the appropriate shell being invoked automatically
to read it. Shell programming thus can be used to combine ordinary pro-
grams conveniently for sophisticated applications without the need for any
programming in conventional languages.

This external user view is commonly thought of as the definition of UNIX,
yet it is the most easily changed definition. Writing a new shell with a quite
different syntax and semantics would greatly change the user view while not
changing the kernel or even the programmer interface. Several menu-driven
and iconic interfaces for UNIX exist, and the X Window System is rapidly
becoming a standard. The heart of UNIX is, of course, the kernel. This kernel is
much more difficult to change than is the user interface, because all programs
depend on the system calls that it provides to remain consistent. Of course,
new system calls can be added to increase functionality, but programs must
then be modified to use the new calls.

A.5 Process Management

A major design problem for operating systems is the representation of
processes. One substantial difference between UNIX and many other systems is
the ease with which multiple processes can be created and manipulated. These
processes are represented in UNIX by various control blocks. No system control
blocks are accessible in the virtual address space of a user process; control

A.5 Process Management 19

blocks associated with a process are stored in the kernel. The kernel uses the
information in these control blocks for process control and CPU scheduling.

A.5.1 Process Control Blocks

The most basic data structure associated with processes is the process structure.
A process structure contains everything that the system needs to know about a
process when the process is swapped out, such as its unique process identifier,
scheduling information (for example, the priority of the process), and pointers
to other control blocks. There is an array of process structures whose length is
defined at system-linking time. The process structures of ready processes are
kept linked together by the scheduler in a doubly linked list (the ready queue),
and there are pointers from each process structure to the process’s parent, to
its youngest living child, and to various other relatives of interest, such as a list
of processes sharing the same program code (text).

The virtual address space of a user process is divided into text (program
code), data, and stack segments. The data and stack segments are always in
the same address space, but they may grow separately, and usually in opposite
directions. Most frequently, the stack grows down as the data grow up toward
it. The text segment is sometimes (as on an Intel 8086 with separate instruction
and data space) in an address space different from the data and stack, and it
is usually read-only. The debugger puts a text segment in read–write mode to
allow insertion of breakpoints.

Every process with sharable text (almost all, under FreeBSD) has a pointer
from its process structure to a text structure. The text structure records how
many processes are using the text segment, including a pointer into a list of
their process structures, and where the page table for the text segment can be
found on disk when it is swapped. The text structure itself is always resident
in main memory. An array of such structures is allocated at system link time.
The text, data, and stack segments for the processes may be swapped. When
the segments are swapped in, they are paged.

The page tables record information on the mapping from the process’s
virtual memory to physical memory. The process structure contains pointers
to the page table, for use when the process is resident in main memory, or
the address of the process on the swap device, when the process is swapped.
There is no special separate page table for a shared text segment; every process
sharing the text segment has entries for its pages in the process’s page table.

Information about the process needed only when the process is resident
(that is, not swapped out) is kept in the user structure (or u structure), rather
than in the process structure. This structure is mapped read-only into user
virtual address space, so user processes can read its contents. It is writable
by the kernel. The user structure contains a copy of the process control block,
or PCB, which is kept here for saving the process’s general registers, stack
pointer, program counter, and page-table base registers when the process is
not running. There is space to keep system-call parameters and return values.
All user and group identifiers associated with the process (not just the effective
user identifier kept in the process structure) are kept here. Signals, timers, and
quotas have data structures here. Of more obvious relevance to the ordinary
user, the current directory and the table of open files are maintained in the user
structure.

20 Appendix A BSD UNIX

Every process has both a user and a system mode. Most ordinary work is
done in user mode, but when a system call is made, it is performed in system
mode. The system and user phases of a process never execute simultaneously.
When a process is executing in system mode, a kernel stack for that process
is used, rather than the user stack belonging to that process. The kernel stack
for the process immediately follows the user structure. The kernel stack and
the user structure together compose the system data segment for the process.
The kernel has its own stack for use when it is not doing work on behalf of a
process (for instance, for interrupt handling).

Figure A.6 illustrates how the process structure is used to find the various
parts of a process.

The fork() system call allocates a new process structure (with a new
process identifier) for the child process and copies the user structure. There
is ordinarily no need for a new text structure, as the processes share their
text. The appropriate counters and lists are merely updated. A new page table
is constructed, and new main memory is allocated for the data and stack
segments of the child process. The copying of the user structure preserves
open file descriptors, user and group identifiers, signal handling, and most
similar properties of a process.

The vfork() system call does not copy the data and stack to the new
process; rather, the new process simply shares the page table of the old one.
A new user structure and a new process structure are still created. A common
use of this system call occurs when a shell executes a command and waits for
its completion. The parent process uses vfork() to produce the child process.
Because the child process wishes to use an execve() immediately to change
its virtual address space completely, there is no need for a complete copy of the
parent process. Such data structures as are necessary for manipulating pipes
may be kept in registers between the vfork() and the execve(). Files may

resident tables

swappable process image

user space

system data structure

process
structure

text
structure

user
structure

kernel
stack

stack

data

text

Figure A.6 Finding parts of a process using the process structure.

A.5 Process Management 21

be closed in one process without affecting the other process, since the kernel
data structures involved depend on the user structure, which is not shared. The
parent is suspended when it calls vfork() until the child either calls execve()
or terminates, so that the parent will not change memory that the child needs.

When the parent process is large, vfork() can produce substantial savings
in system CPU time. However, it is a fairly dangerous system call, since
any memory change occurs in both processes until the execve() occurs. An
alternative is to share all pages by duplicating the page table but to mark the
entries of both page tables as copy-on-write. The hardware protection bits are
set to trap any attempt to write in these shared pages. If such a trap occurs,
a new frame is allocated, and the shared page is copied to the new frame.
The page tables are adjusted to show that this page is no longer shared (and
therefore no longer needs to be write-protected), and execution can resume.

An execve() system call creates no new process or user structure. Rather,
the text and data of the process are replaced. Open files are preserved (although
there is a way to specify that certain file descriptors are to be closed on an
execve()). Most signal-handling properties are preserved, but arrangements
to call a specific user routine on a signal are canceled, for obvious reasons. The
process identifier and most other properties of the process are unchanged.

A.5.2 CPU Scheduling

CPU scheduling in UNIX is designed to benefit interactive processes. Processes
are given small CPU time slices by a priority algorithm that reduces to round-
robin scheduling for CPU-bound jobs.

Every process has a scheduling priority associated with it; larger numbers
indicate lower priority. Processes doing disk I/O or other important tasks have
priorities less than “pzero” and cannot be killed by signals. Ordinary user
processes have positive priorities and thus are less likely to be run than is any
system process, although user processes can set precedence over one another
through the nice command.

The more CPU time a process accumulates, the lower (more positive) its
priority becomes, and vice versa. This negative feedback in CPU scheduling
makes it difficult for a single process to take all the CPU time. Process aging is
employed to prevent starvation.

Older UNIX systems used a 1-second quantum for the round-robin schedul-
ing. FreeBSD reschedules processes every 0.1 second and recomputes priorities
every second. The round-robin scheduling is accomplished by the timeout
mechanism, which tells the clock interrupt driver to call a kernel subroutine
after a specified interval. The subroutine to be called in this case causes the
rescheduling and then resubmits a timeout to call itself again. The priority
recomputation is also timed by a subroutine that resubmits a timeout for itself.

There is no preemption of one process by another in the kernel. A process
may relinquish the CPU because it is waiting for I/O or because its time slice
has expired. When a process chooses to relinquish the CPU, it goes to sleep
on an event. The kernel primitive used for this purpose is called sleep()
(not to be confused with the user-level library routine of the same name).
Sleep() takes an argument that is, by convention, the address of a kernel data
structure related to an event for which a process is waiting. When the event
occurs, the system process that knows about it calls wakeup()with the address

22 Appendix A BSD UNIX

corresponding to the event, and all processes that had done a sleep on the same
address are put in the ready queue to be run.

For example, a process waiting for disk I/O to complete will sleep on the
address of the buffer header corresponding to the data being transferred. When
the interrupt routine for the disk driver notes that the transfer is complete, it
calls wakeup() on the buffer header. The interrupt uses the kernel stack for
whatever process happened to be running at the time, and the wakeup() is
done from that system process.

The process that actually does run is chosen by the scheduler. Sleep()
takes a second argument, which is the scheduling priority to be used for this
purpose. This priority argument, if less than “pzero,” also prevents the process
from being awakened prematurely by some exceptional event, such as a signal.

When a signal is generated, it is left pending until the system half of the
affected process next runs. This event usually happens soon, since the signal
normally causes the process to be awakened if the process has been waiting
for some other condition.

No memory is associated with events. The caller of the routine that does
a sleep() on an event must be prepared to deal with a premature return,
including the possibility that the reason for waiting has vanished.

Race conditions are involved in the event mechanism. If a process decides
(because of checking a flag in memory, for instance) to sleep on an event, and
the event occurs before the process can execute the primitive that does the
sleep() on the event, the process sleeping may then sleep forever. We prevent
this situation by raising the hardware processor priority during the critical
section so that no interrupts can occur. Thus, only the process desiring the event
can run until it is sleeping. Hardware processor priority is used in this manner
to protect critical regions throughout the kernel and is the greatest obstacle to
porting UNIX to multiple-processor machines. However, this problem has not
prevented such porting from being done repeatedly.

Many processes, such as text editors, are I/O bound and are, in general,
scheduled mainly on the basis of waiting for I/O. Experience suggests that the
UNIX scheduler performs best with I/O-bound jobs, as can be observed when
several CPU-bound jobs, such as text formatters or language interpreters, are
running.

What has been referred to here as CPU scheduling corresponds closely to the
short-term scheduling of Chapter 3. However, the negative-feedback property
of the priority scheme provides some long-term scheduling in that it largely
determines the long-term job mix. Medium-term scheduling is done by the
swapping mechanism described in Section A.6.

A.6 Memory Management

Much of UNIX’s early development was done on a PDP-11. The PDP-11 has only
eight segments in its virtual address space, and the size of each is at most 8,192
bytes. The larger machines, such as the PDP-11/70, allow separate instruction
and address spaces, effectively doubling the address space and number of
segments, but this address space is still relatively small. In addition, the kernel
was even more severely constrained due to dedication of one data segment
to interrupt vectors, another to point at the per-process system data segment,

A.6 Memory Management 23

and yet another for the UNIBUS (system I/O bus) registers. Further, on the
smaller PDP-11s, total physical memory was limited to 256 KB. The total memory
resources were insufficient to justify or support complex memory-management
algorithms. Thus, UNIX swapped entire process memory images.

Berkeley introduced paging to UNIX with 3BSD. VAX 4.2BSD is a demand-
paged virtual memory system. Paging eliminates external fragmentation
of memory. (Internal fragmentation still occurs, but it is negligible with a
reasonably small page size.) Because paging allows execution with only parts of
each process in memory, more jobs can be kept in main memory, and swapping
can be kept to a minimum. Demand paging is done in a straightforward manner.
When a process needs a page and the page is not there, a page fault to the kernel
occurs, a frame of main memory is allocated, and the proper disk page is read
into the frame.

There are a few optimizations. If the page needed is still in the page table
for the process but has been marked invalid by the page-replacement process,
it can be marked valid and used without any I/O transfer. Pages can similarly
be retrieved from the list of free frames. When most processes are started,
many of their pages are prepaged and are put on the free list for recovery
by this mechanism. Arrangements can also be made for a process to have no
prepaging on startup. That is seldom done, however, because it results in more
page-fault overhead, being closer to pure demand paging. FreeBSD implements
page coloring with paging queues. The queues are arranged according to the
size of the processor’s L1 and L2 caches. When a new page needs to be allocated,
FreeBSD tries to get one that is optimally aligned for the cache. If the page has
to be fetched from disk, it must be locked in memory for the duration of
the transfer. This locking ensures that the page will not be selected for page
replacement. Once the page is fetched and mapped properly, it must remain
locked if raw physical I/O is being done on it.

The page-replacement algorithm is more interesting. 4.2BSD uses a modi-
fication of the second-chance (clock) algorithm described in Section 9.4.5. The
map of all nonkernel main memory (the core map or cmap) is swept linearly
and repeatedly by a software clock hand. When the clock hand reaches a given
frame, if the frame is marked as being in use by some software condition (for
example, if physical I/O is in progress using it) or if the frame is already free,
the frame is left untouched, and the clock hand sweeps to the next frame.
Otherwise, the corresponding text or process page-table entry for this frame
is located. If the entry is already invalid, the frame is added to the free list.
Otherwise, the page-table entry is made invalid but reclaimable (that is, if it
has not been paged out by the next time it is wanted, it can just be made valid
again).

BSD Tahoe added support for systems that implement the reference bit.
On such systems, one pass of the clock hand turns the reference bit off, and a
second pass places those pages whose reference bits remain off onto the free list
for replacement. Of course, if the page is dirty, it must first be written to disk
before being added to the free list. Pageouts are done in clusters to improve
performance.

There are checks to make sure that the number of valid data pages for a
process does not fall too low and to keep the paging device from being flooded
with requests. There is also a mechanism by which a process can limit the
amount of main memory it uses.

24 Appendix A BSD UNIX

The LRU clock-hand scheme is implemented in the pagedaemon, which
is process 2. (Remember that the swapper is process 0 and init is process
1.) This process spends most of its time sleeping, but a check is done several
times per second (scheduled by a timeout) to see if action is necessary. If it
is, process 2 is awakened. Whenever the number of free frames falls below a
threshold, lotsfree, the pagedaemon is awakened. Thus, if there is always a
large amount of free memory, the pagedaemon imposes no load on the system,
because it never runs.

The sweep of the clock hand each time thepagedaemonprocess is awakened
(that is, the number of frames scanned, which is usually more than the number
paged out) is determined both by the number of frames lacking to reach
lotsfree and by the number of frames that the scheduler has determined are
needed for various reasons (the more frames needed, the longer the sweep).
If the number of frames free rises to lotsfree before the expected sweep is
completed, the hand stops, and the pagedaemonprocess sleeps. The parameters
that determine the range of the clock-hand sweep are determined at system
startup according to the amount of main memory, such that pagedaemon does
not use more than 10 percent of all CPU time.

If the scheduler decides that the paging system is overloaded, processes will
be swapped out whole until the overload is relieved. This swapping usually
happens only if several conditions are met: load average is high; free memory
has fallen below a low limit, minfree; and the average memory available
over recent time is less than a desirable amount, desfree, where lotsfree
> desfree > minfree. In other words, only a chronic shortage of memory
with several processes trying to run will cause swapping, and even then free
memory has to be extremely low at the moment. (An excessive paging rate or
a need for memory by the kernel itself may also enter into the calculations, in
rare cases.) Processes may be swapped by the scheduler, of course, for other
reasons (such as simply because they have not run for a long time).

The parameter lotsfree is usually one-quarter of the memory in the
map that the clock hand sweeps, and desfree and minfree are usually the
same across different systems but are limited to fractions of available memory.
FreeBSD dynamically adjusts its paging queues so these virtual memory
parameters will rarely need to be adjusted. Minfree pages must be kept free
in order to supply any pages that might be needed at interrupt time.

Every process’s text segment is, by default, shared and read-only. This
scheme is practical with paging, because there is no external fragmentation,
and the swap space gained by sharing more than offsets the negligible amount
of overhead involved, as the kernel virtual space is large.

CPU scheduling, memory swapping, and paging interact. The lower the
priority of a process, the more likely that its pages will be paged out and
the more likely that it will be swapped in its entirety. The age preferences
in choosing processes to swap guard against thrashing, but paging does so
more effectively. Ideally, processes will not be swapped out unless they are
idle, because each process will need only a small working set of pages in main
memory at any one time, and the pagedaemon will reclaim unused pages for
use by other processes.

The amount of memory the process will need is some fraction of that
process’s total virtual size—up to one-half if that process has been swapped
out for a long time.

A.7 File System 25

A.7 File System

The UNIX file system supports two main objects: files and directories. Directo-
ries are just files with a special format, so the representation of a file is the basic
UNIX concept.

A.7.1 Blocks and Fragments

Most of the file system is taken up by data blocks, which contain whatever the
users have put in their files. Let’s consider how these data blocks are stored on
the disk.

The hardware disk sector is usually 512 bytes. A block size larger than
512 bytes is desirable for speed. However, because UNIX file systems usually
contain a very large number of small files, much larger blocks would cause
excessive internal fragmentation. That is why the earlier 4.1BSD file system was
limited to a 1,024-byte (1-KB) block. The 4.2BSD solution is to use two block sizes
for files that have no indirect blocks. All the blocks of a file are of a large size
(such as 8 KB) except the last. The last block is an appropriate multiple of a
smaller fragment size (for example, 1,024 KB) to fill out the file. Thus, a file of
size 18,000 bytes would have two 8-KB blocks and one 2-KB fragment (which
would not be filled completely).

The block and fragment sizes are set during file-system creation according
to the intended use of the file system. If many small files are expected, the
fragment size should be small; if repeated transfers of large files are expected,
the basic block size should be large. Implementation details force a maximum
block-to-fragment ratio of 8:1 and a minimum block size of 4 KB, so typical
choices are 4,096:512 for the former case and 8,192:1,024 for the latter.

Suppose data are written to a file in transfer sizes of 1-KB bytes, and the
block and fragment sizes of the file system are 4 KB and 512 bytes. The file
system will allocate a 1-KB fragment to contain the data from the first transfer.
The next transfer will cause a new 2-KB fragment to be allocated. The data from
the original fragment must be copied into this new fragment, followed by the
second 1-KB transfer. The allocation routines attempt to find the required space
on the disk immediately following the existing fragment so that no copying
is necessary. If they cannot do so, up to seven copies may be required before
the fragment becomes a block. Provisions have been made for programs to
discover the block size for a file so that transfers of that size can be made, to
avoid fragment recopying.

A.7.2 Inodes

A file is represented by an inode, which is a record that stores most of the
information about a specific file on the disk. (See Figure A.7.) The name inode
(pronounced EYE node) is derived from “index node” and was originally spelled
“i-node”; the hyphen fell out of use over the years. The term is sometimes
spelled “I node.”

The inode contains the user and group identifiers of the file, the times of the
last file modification and access, a count of the number of hard links (directory
entries) to the file, and the type of the file (plain file, directory, symbolic link,
character device, block device, or socket). In addition, the inode contains 15

26 Appendix A BSD UNIX

direct blocks

data

data

data

data

data

data

data

data

data

data

•
•
••

•
•

•
•
•

•
•
•

•
•
•

•
•
•

mode

owners (2)

timestamps (3)

size block count

single indirect

double indirect

triple indirect

Figure A.7 The UNIX inode.

pointers to the disk blocks containing the data contents of the file. The first
12 of these pointers point to direct blocks. That is, they contain addresses of
blocks that contain data of the file. Thus, the data for small files (no more than
12 blocks) can be referenced immediately, because a copy of the inode is kept
in main memory while a file is open. If the block size is 4 KB, then up to 48 KB
of data can be accessed directly from the inode.

The next three pointers in the inode point to indirect blocks. If the file is
large enough to use indirect blocks, each of the indirect blocks is of the major
block size; the fragment size applies only to data blocks. The first indirect block
pointer is the address of a single indirect block. The single indirect block is an
index block containing not data but the addresses of blocks that do contain
data. Then, there is a double-indirect-block pointer, the address of a block that
contains the addresses of blocks that contain pointers to the actual data blocks.
The last pointer would contain the address of a triple indirect block; however,
there is no need for it.

The minimum block size for a file system in 4.2BSD is 4 KB, so files with as
many as 232 bytes will use only double, not triple, indirection. That is, since
each block pointer takes 4 bytes, we have 49,152 bytes accessible in direct
blocks, 4,194,304 bytes accessible by a single indirection, and 4,294,967,296
bytes reachable through double indirection, for a total of 4,299,210,752 bytes,
which is larger than 232 bytes. The number 232 is significant because the file
offset in the file structure in main memory is kept in a 32-bit word. Files
therefore cannot be larger than 232 bytes. Since file pointers are signed integers
(for seeking backward and forward in a file), the actual maximum file size is
232−1 bytes. Two gigabytes is large enough for most purposes.

A.7 File System 27

A.7.3 Directories

Plain files are not distinguished from directories at this level of implementation.
Directory contents are kept in data blocks, and directories are represented by
an inode in the same way as plain files. Only the inode type field distinguishes
between plain files and directories. Plain files are not assumed to have a
structure, whereas directories have a specific structure. In Version 7, file names
were limited to 14 characters, so directories were a list of 16-byte entries: 2
bytes for an inode number and 14 bytes for a file name.

In FreeBSD file names are of variable length, up to 255 bytes, so directory
entries are also of variable length. Each entry contains first the length of the
entry, then the file name and the inode number. This variable-length entry
makes the directory management and search routines more complex, but
it allows users to choose much more meaningful names for their files and
directories. The first two names in every directory are “.” and “..”. New directory
entries are added to the directory in the first space available, generally after
the existing files. A linear search is used.

The user refers to a file by a path name, whereas the file system uses the
inode as its definition of a file. Thus, the kernel has to map the supplied user
path name to an inode. The directories are used for this mapping.

First, a starting directory is determined. As mentioned earlier, if the first
character of the path name is “/,” the starting directory is the root directory.
If the path name starts with any character other than a slash, the starting
directory is the current directory of the current process. The starting directory
is checked for proper file type and access permissions, and an error is returned
if necessary. The inode of the starting directory is always available.

The next element of the path name, up to the next “/” or to the end of the
path name, is a file name. The starting directory is searched for this name, and
an error is returned if the name is not found. If the path name has yet another
element, the current inode must refer to a directory; an error is returned if it
does not or if access is denied. This directory is searched in the same way as the
previous one. This process continues until the end of the path name is reached
and the desired inode is returned. This step-by-step process is needed because
at any directory a mount point (or symbolic link, as discussed below) may be
encountered, causing the translation to move to a different directory structure
for continuation.

Hard links are simply directory entries like any other. We handle symbolic
links for the most part by starting the search over with the path name taken
from the contents of the symbolic link. We prevent infinite loops by counting
the number of symbolic links encountered during a path-name search and
returning an error when a limit (eight) is exceeded.

Nondisk files (such as devices) do not have data blocks allocated on the
disk. The kernel notices these file types (as indicated in the inode) and calls
appropriate drivers to handle I/O for them.

Once the inode is found by, for instance, the open() system call, a file
structure is allocated to point to the inode. The file descriptor given to
the user refers to this file structure. FreeBSD has a directory name cache to
hold recent directory-to-inode translations, which greatly increases file-system
performance.

28 Appendix A BSD UNIX

user space

read (4, …)

system space disk space

data
blocks

inode
list

in-core
inode

list

tables of
open files

(per process)

file-structure
table

sync

•
•
•

Figure A.8 File-system control blocks.

A.7.4 Mapping a File Descriptor to an Inode

A system call that refers to an open file indicates the file by passing a file
descriptor as an argument. The file descriptor is used by the kernel to index
a table of open files for the current process. Each entry in the table contains
a pointer to a file structure. This file structure in turn points to the inode; see
Figure A.8. The open file table has a fixed length, which is settable only at boot
time. Therefore, there is a fixed limit on the number of concurrently open files
in a system.

The read() and write() system calls do not take a position in the file
as an argument. Rather, the kernel keeps a file offset, which is updated by an
appropriate amount after each read() or write() according to the number of
data actually transferred. The offset can be set directly by the lseek() system
call. If the file descriptor indexed an array of inode pointers instead of file
pointers, this offset would have to be kept in the inode. Because more than one
process may open the same file, and each such process needs its own offset for
the file, keeping the offset in the inode is inappropriate. Thus, the file structure
is used to contain the offset. File structures are inherited by the child process
after a fork(), so several processes may share the same offset location for a
file.

The inode structure pointed to by the file structure is an in-core copy of the
inode on the disk. The in-core inode has a few extra fields, such as a reference
count of how many file structures are pointing at it, and the file structure has a
similar reference count for how many file descriptors refer to it. When a count
becomes zero, the entry is no longer needed and may be reclaimed and reused.

A.7.5 Disk Structures

The file system that the user sees is supported by data on a mass storage device
—usually, a disk. The user ordinarily knows of only one file system, but this
one logical file system may actually consist of several physical file systems,
each on a different device. Because device characteristics differ, each separate
hardware device defines its own physical file system. In fact, we generally want
to partition large physical devices, such as disks, into multiple logical devices.
Each logical device defines a physical file system. Figure A.9 illustrates how

A.7 File System 29

logical file system file systems logical devices physical devices

root

swap

Figure A.9 Mapping of a logical file system to physical devices.

a directory structure is partitioned into file systems, which are mapped onto
logical devices, which are partitions of physical devices. The sizes and locations
of these partitions were coded into device drivers in earlier systems, but they
are maintained on the disk by FreeBSD.

Partitioning a physical device into multiple file systems has several
benefits. Different file systems can support different uses. Although most
partitions will be used by the file system, at least one will be needed as a swap
area for the virtual memory software. Reliability is improved, because software
damage is generally limited to only one file system. We can improve efficiency
by varying the file-system parameters (such as the block and fragment sizes) for
each partition. Also, having separate file systems prevents one program from
using all available space for a large file, because files cannot be split across file
systems. Finally, disk backups are done per partition, and it is faster to search
a backup tape for a file if the partition is smaller. Restoring the full partition
from tape is also faster.

The number of file systems on a drive varies according to the size of the
disk and the purpose of the computer system as a whole. One file system, the
root file system, is always available. Other file systems may be mounted—that
is, integrated into the directory hierarchy of the root file system.

A bit in the inode structure indicates that the inode has a file system
mounted on it. A reference to this file causes the mount table to be searched to

30 Appendix A BSD UNIX

find the device number of the mounted device. The device number is used to
find the inode of the root directory of the mounted file system, and that inode
is used. Conversely, if a path-name element is “..” and the directory being
searched is the root directory of a file system that is mounted, the mount table
is searched to find the inode it is mounted on, and that inode is used.

Each file system is a separate system resource and represents a set of files.
The first sector on the logical device is the boot block, possibly containing a
primary bootstrap program, which may be used to call a secondary bootstrap
program residing in the next 7.5 KB. A system needs only one partition
containing boot-block data, but the system manager may install duplicates
via privileged programs, to allow booting when the primary copy is damaged.
The superblock contains static parameters of the file system. These parameters
include the total size of the file system, the block and fragment sizes of the data
blocks, and assorted parameters that affect allocation policies.

A.7.6 Implementations

The user interface to the file system is simple and well defined, allowing the
implementation of the file system itself to be changed without significant effect
on the user. The file system was changed between Version 6 and Version 7 of
3BSD, and again between Version 7 and 4BSD. For Version 7, the size of inodes
doubled, the maximum file and file-system sizes increased, and the details
of free-list handling and superblock information changed. At that time also,
seek() (with a 16-bit offset) became lseek() (with a 32-bit offset), to allow
specification of offsets in larger files; but few other changes were visible outside
the kernel.

In 4.0BSD, the size of blocks used in the file system was increased from 512
bytes to 1,024 bytes. Although this increased size produced increased internal
fragmentation on the disk, it doubled throughput, due mainly to the greater
number of data accessed on each disk transfer. This idea was later adopted by
System V, along with a number of other ideas, device drivers, and programs.

4.2BSD added the Berkeley Fast File System, which increased speed and was
accompanied by new features. Symbolic links required new system calls. Long
file names necessitated new directory system calls to traverse the now-complex
internal directory structure. Finally,truncate() calls were added. The Fast File
System was a success and is now found in most implementations of UNIX. Its
performance is made possible by its layout and allocation policies, which we
discuss next. In Section 12.4.4, we discussed changes made in SunOS to increase
disk throughput further.

A.7.7 Layout and Allocation Policies

The kernel uses a <logical device number, inode number> pair to identify a file.
The logical device number defines the file system involved. The inodes in the
file system are numbered in sequence. In the Version 7 file system, all inodes
are in an array immediately following a single superblock at the beginning of
the logical device, with the data blocks following the inodes. The inode number
is effectively just an index into this array.

With the Version 7 file system, a block of a file can be anywhere on the disk
between the end of the inode array and the end of the file system. Free blocks
are kept in a linked list in the superblock. Blocks are pushed onto the front of

A.7 File System 31

the free list and are removed from the front as needed to serve new files or to
extend existing files. Thus, the blocks of a file may be arbitrarily far from both
the inode and one another. Furthermore, the more a file system of this kind is
used, the more disorganized the blocks in a file become. We can reverse this
process only by reinitializing and restoring the entire file system, which is not
a convenient task to perform. This process was described in Section 12.7.4.

Another difficulty is that the reliability of the file system is suspect. For
speed, the superblock of each mounted file system is kept in memory. Keeping
the superblock in memory allows the kernel to access a superblock quickly,
especially for using the free list. Every 30 seconds, the superblock is written
to the disk, to keep the in-core and disk copies synchronized (by the update
program, using the sync() system call). However, system bugs or hardware
failures may cause a system crash, which destroys the in-core superblock
between updates to the disk. Then, the free list on disk does not accurately
reflect the state of the disk. To reconstruct it, we must perform a lengthy
examination of all blocks in the file system. (This problem remains in the new
file system.)

The 4.2BSD file-system implementation is radically different from that of
Version 7. This reimplementation was done primarily to improve efficiency
and robustness, and most such changes are invisible outside the kernel. Other
changes introduced at the same time are visible at both the system-call and
the user levels; examples include symbolic links and long file names (up to
255 characters). Most of the changes required for these features were not in the
kernel, however, but in the programs that use them.

Space allocation is especially different. The major new concept in FreeBSD
is the cylinder group. The cylinder group was introduced to allow localization
of the blocks in a file. Each cylinder group occupies one or more consecutive
cylinders of the disk, so that disk accesses within the cylinder group require
minimal disk head movement. Every cylinder group has a superblock, a
cylinder block, an array of inodes, and some data blocks (Figure A.10).

The superblocks in all cylinder groups are identical, so that a superblock
can be recovered from any one of them in the event of disk corruption. The
cylinder block contains dynamic parameters of the particular cylinder group.
These include a bit map of free data blocks and fragments and a bit map of free
inodes. Statistics on recent progress of the allocation strategies are also kept
here.

data blocks

superblock

cylinder block

inodes

 data blocks

Figure A.10 4.3 BSD cylinder group.

32 Appendix A BSD UNIX

The header information in a cylinder group (the superblock, the cylinder
block, and the inodes) is not always at the beginning of the group. If it were,
the header information for every cylinder group might be on the same disk
platter, and a single disk head crash could wipe out all of them. Therefore,
each cylinder group has its header information at a different offset from the
beginning of the group.

The directory-listing command ls commonly reads all the inodes of every
file in a directory, making it desirable for all such inodes to be close together on
the disk. For this reason, the inode for a file is usually allocated from the cylinder
group containing the inode of the file’s parent directory. Not everything can be
localized, however, so an inode for a new directory is put in a different cylinder
group from that of its parent directory. The cylinder group chosen for such a
new directory inode is that with the greatest number of unused inodes.

To reduce disk head seeks involved in accessing the data blocks of a file,
we allocate blocks from the same cylinder group as often as possible. Because a
single file cannot be allowed to take up all the blocks in a cylinder group, a file
exceeding a certain size (such as 2 MB) has further block allocation redirected to
a different cylinder group; the new group is chosen from among those having
more than average free space. If the file continues to grow, allocation is again
redirected (at each megabyte) to yet another cylinder group. Thus, all the blocks
of a small file are likely to be in the same cylinder group, and the number of
long head seeks involved in accessing a large file is kept small.

There are two levels of disk-block-allocation routines. The global policy
routines select a desired disk block according to the considerations already
discussed. The local policy routines use the specific information recorded in
the cylinder blocks to choose a block near the one requested. If the requested
block is not in use, it is returned. Otherwise, the routine returns either the
block rotationally closest to the one requested in the same cylinder or a block
in a different cylinder but in the same cylinder group. If no more blocks are
in the cylinder group, a quadratic rehash is done among all the other cylinder
groups to find a block. If that fails, an exhaustive search is done. If enough free
space (typically 10 percent) is left in the file system, blocks are usually found
where desired, the quadratic rehash and exhaustive search are not used, and
performance of the file system does not degrade with use.

Because of the increased efficiency of the Fast File System, typical disks are
now utilized at 30 percent of their raw transfer capacity. This percentage is a
marked improvement over that realized with the Version 7 file system, which
used about 3 percent of the bandwidth.

BSD Tahoe introduced the Fat Fast File System, which allows the number
of inodes per cylinder group, the number of cylinders per cylinder group,
and the number of distinguished rotational positions to be set when the file
system is created. FreeBSD previously set these parameters according to the
disk hardware type.

A.8 I/O System

One of the purposes of an operating system is to hide the peculiarities of
specific hardware devices from the user. For example, the file system presents
a simple, consistent storage facility (the file) independent of the underlying

A.8 I/O System 33

disk hardware. In UNIX, the peculiarities of I/O devices are also hidden from
the bulk of the kernel itself by the I/O system. The I/O system consists of a buffer
caching system, general device-driver code, and drivers for specific hardware
devices. Only the device driver knows the peculiarities of a specific device. The
major parts of the I/O system are diagrammed in Figure A.11.

There are three main kinds of I/O in FreeBSD: block devices, character
devices, and the socket interface. The socket interface, together with its
protocols and network interfaces, will be described in Section A.9.1.

Block devices include disks and tapes. Their distinguishing characteristic
is that they are directly addressable in a fixed block size—usually 512 bytes.
A block-device driver is required to isolate details of tracks, cylinders, and so
on from the rest of the kernel. Block devices are accessible directly through
appropriate device special files (such as /dev/rp0), but they are more commonly
accessed indirectly through the file system. In either case, transfers are buffered
through the block buffer cache, which has a profound effect on efficiency.

Character devices include terminals and line printers but also include
almost everything else (except network interfaces) that does not use the block
buffer cache. For instance, /dev/mem is an interface to physical main memory,
and /dev/null is a bottomless sink for data and an endless source of end-of-file
markers. Some devices, such as high-speed graphics interfaces, may have their
own buffers or may always do I/O directly into the user’s data space; because
they do not use the block buffer cache, they are classed as character devices.
Terminals and terminal-like devices use C-lists, which are buffers smaller than
those of the block buffer cache.

Block devices and character devices are the two main device classes. Device
drivers are accessed by one of two arrays of entry points. One array is for block
devices; the other is for character devices. A device is distinguished by a class
(block or character) and a device number. The device number consists of two
parts. The major device number is used to index the array for character or
block devices to find entries into the appropriate device driver. The minor
device number is interpreted by the device driver as, for example, a logical disk
partition or a terminal line.

A device driver is connected to the rest of the kernel only by the entry points
recorded in the array for its class and by its use of common buffering systems.
This segregation is important for portability and for system configuration.

the hardware

system-call interface to the kernel

socket

protocols

network
interface

plain file

file
system

block-device driver

cooked
block
interface

raw tty
interface

cooked TTY

line
discipline

character-device driver

raw
block
interface

Figure A.11 4.3 BSD kernel I/O structure.

34 Appendix A BSD UNIX

A.8.1 Block Buffer Cache

The block devices, as mentioned, use a block buffer cache. The buffer cache
consists of a number of buffer headers, each of which can point to a piece of
physical memory as well as to a device number and a block number on the
device. The buffer headers for blocks not currently in use are kept in several
linked lists, one for each of the following:

• Buffers recently used, linked in LRU order (the LRU list)

• Buffers not recently used or without valid contents (the AGE list)

• EMPTY buffers with no physical memory associated with them

The buffers in these lists are also hashed by device and block number for search
efficiency.

When a block is wanted from a device (a read), the cache is searched. If the
block is found, it is used, and no I/O transfer is necessary. If it is not found,
a buffer is chosen from the AGE list or, if that list is empty, the LRU list. Then
the device number and block number associated with it are updated, memory
is found for it if necessary, and the new data are transferred into it from the
device. If there are no empty buffers, the LRU buffer is written to its device (if
it is modified), and the buffer is reused.

On a write, if the block in question is already in the buffer cache, the new
data are put in the buffer (overwriting any previous data), the buffer header is
marked to indicate that the buffer has been modified, and no I/O is immediately
necessary. The data will be written when the buffer is needed for other data.
If the block is not found in the buffer cache, an empty buffer is chosen (as
with a read), and a transfer is done to this buffer. Writes are periodically forced
for dirty buffer blocks to minimize potential file-system inconsistencies after a
crash.

The number of data in a buffer in FreeBSD is variable, up to a maximum
over all file systems, usually 8 KB. The minimum size is the paging-cluster size,
usually 1,024 bytes. Buffers are page-cluster aligned, and any page cluster may
be mapped into only one buffer at a time, just as any disk block may be mapped
into only one buffer at a time. The EMPTY list holds buffer headers, which are
used if a physical memory block of 8 KB is split to hold multiple, smaller blocks.
Headers are needed for these blocks and are retrieved from EMPTY.

The number of data in a buffer may grow as a user process writes more
data following those already in the buffer. When this increase occurs, a new
buffer large enough to hold all the data is allocated, and the original data are
copied into it, followed by the new data. If a buffer shrinks, a buffer is taken
off the empty queue, excess pages are put in it, and that buffer is released to be
written to disk.

Some devices, such as magnetic tapes, require that blocks be written in a
certain order. Facilities are therefore provided to force a synchronous write of
buffers to these devices in the correct order. Directory blocks are also written
synchronously, to forestall crash inconsistencies. Consider the chaos that could
occur if many changes were made to a directory but the directory entries
themselves were not updated.

A.8 I/O System 35

The size of the buffer cache can have a profound effect on the performance
of a system, because, if it is large enough, the percentage of cache hits can be
high and the number of actual I/O transfers low. FreeBSD optimizes the buffer
cache by continually adjusting the amount of memory used by programs and
the disk cache.

Some interesting interactions occur among the buffer cache, the file system,
and the disk drivers. When data are written to a disk file, they are buffered in
the cache, and the disk driver sorts its output queue according to disk address.
These two actions allow the disk driver to minimize disk head seeks and to
write data at times optimized for disk rotation. Unless synchronous writes
are required, a process writing to disk simply writes into the buffer cache,
and the system asynchronously writes the data to disk when convenient. The
user process sees very fast writes. When data are read from a disk file, the
block I/O system does some read-ahead; however, writes are much nearer to
asynchronous than are reads. Thus, output to the disk through the file system
is often faster than is input for large transfers, counter to intuition.

A.8.2 Raw Device Interfaces

Almost every block device also has a character interface, and these are called
raw device interfaces. Such an interface differs from the block interface in that
the block buffer cache is bypassed.

Each disk driver maintains a queue of pending transfers. Each record in
the queue specifies whether it is a read or a write and gives a main memory
address for the transfer (usually in 512-byte increments), a device address for
the transfer (usually the address of a disk sector), and a transfer size (in sectors).
It is simple to map the information from a block buffer to what is required for
this queue.

It is almost as simple to map a piece of main memory corresponding to
part of a user process’s virtual address space. This mapping is what a raw disk
interface, for instance, does. Unbuffered transfers directly to or from a user’s
virtual address space are thus allowed. The size of the transfer is limited by
the physical devices, some of which require an even number of bytes.

The kernel accomplishes transfers for swapping and paging simply by
putting the appropriate request on the queue for the appropriate device. No
special swapping or paging device driver is needed.

The 4.2BSD file-system implementation was actually written and largely
tested as a user process that used a raw disk interface, before the code was
moved into the kernel. In an interesting about-face, the Mach operating system
has no file system per se. File systems can be implemented as user-level tasks
(see Appendix B).

A.8.3 C-Lists

As mentioned, terminals and terminal-like devices use a character-buffering
system that keeps small blocks of characters (usually 28 bytes) in linked lists
called C-lists. Although all free character buffers are kept in a single free list,
most device drivers that use them limit the number of characters that may be
queued at one time for any given terminal line.

There are routines to enqueue and dequeue characters for such lists. A
write() system call to a terminal enqueues characters on a list for the device.

36 Appendix A BSD UNIX

An initial transfer is started, and interrupts cause dequeuing of characters and
further transfers.

Input is similarly interrupt driven. Terminal drivers typically support two
input queues, however, and conversion from the first (raw queue) to the other
(canonical queue) is triggered when the interrupt routine puts an end-of-line
character on the raw queue. The process doing a read on the device is then
awakened, and its system phase does the conversion. The characters thus put
on the canonical queue are then available to be returned to the user process by
the read.

The device driver can bypass the canonical queue and return characters
directly from the raw queue. This mode of operation is known as raw mode.
Full-screen editors, as well as other programs that need to react to every
keystroke, use this mode.

A.9 Interprocess Communication

Although many tasks can be accomplished in isolated processes, many others
require interprocess communication. Isolated computing systems have long
served for many applications, but networking is increasingly important.
Furthermore, with the increasing use of personal workstations, resource
sharing is becoming more common. Interprocess communication has not
traditionally been one of UNIX’s strong points.

A.9.1 Sockets

The pipe (discussed in Section A.4.3) is the IPC mechanism most characteristic
of UNIX. A pipe permits a reliable unidirectional byte stream between two
processes. It is traditionally implemented as an ordinary file, with a few
exceptions. It has no name in the file system, being created instead by the
pipe() system call. Its size is fixed, and when a process attempts to write to a
full pipe, the process is suspended. Once all data previously written into the
pipe have been read out, writing continues at the beginning of the file (pipes
are not true circular buffers). One benefit of the small size of pipes (usually
4,096 bytes) is that pipe data are seldom actually written to disk; they usually
are kept in memory by the normal block buffer cache.

In FreeBSD pipes are implemented as a special case of the socket mecha-
nism. The socket mechanism provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to networking facilities.
Even on the same machine, a pipe can be used only by two processes related
through use of the fork() system call. The socket mechanism can be used by
unrelated processes.

A socket is an endpoint of communication. A socket in use usually has an
address bound to it. The nature of the address depends on the communication
domain of the socket. A characteristic property of a domain is that processes
communicating in the same domain use the same address format. A single
socket can communicate in only one domain.

The three domains currently implemented in FreeBSD are the UNIX domain
(AF UNIX), the Internet domain (AF INET), and the XEROX Network Services (NS)
domain (AF NS). The address format of the UNIX domain is that of an ordinary

A.9 Interprocess Communication 37

file-system path name, such as /alpha/beta/gamma. Processes communicating in
the Internet domain use DARPA Internet communications protocols (such as
TCP/IP) and Internet addresses, which consist of a 32-bit host number and a
32-bit port number (representing a rendezvous point on the host).

There are several socket types, which represent classes of services. Each
type may or may not be implemented in any communication domain. If a type
is implemented in a given domain, it may be implemented by one or more
protocols, which may be selected by the user:

• Stream sockets. These sockets provide reliable, duplex, sequenced data
streams. No data are lost or duplicated in delivery, and there are no record
boundaries. This type is supported in the Internet domain by TCP. In the
UNIX domain, pipes are implemented as a pair of communicating stream
sockets.

• Sequenced packet sockets. These sockets provide data streams like those
of stream sockets, except that record boundaries are provided. This type is
used in the XEROX AF NS protocol.

• Datagram sockets. These sockets transfer messages of variable size in
either direction. There is no guarantee that such messages will arrive in
the same order they were sent, or that they will be unduplicated, or that
they will arrive at all, but the original message (or record) size is preserved
in any datagram that does arrive. This type is supported in the Internet
domain by UDP.

• Reliably delivered message sockets. These sockets transfer messages
that are guaranteed to arrive and that otherwise are like the messages
transferred using datagram sockets. This type is currently unsupported.

• Raw sockets. These sockets allow direct access by processes to the
protocols that support the other socket types. The protocols accessible
include not only the uppermost ones but also lower-level protocols. For
example, in the Internet domain, it is possible to reach TCP, IP beneath
that, or an Ethernet protocol beneath that. This capability is useful for
developing new protocols.

A set of system calls is specific to the socket facility. The socket() system
call creates a socket. It takes as arguments specifications of the communication
domain, the socket type, and the protocol to be used to support that type. The
value returned by the call is a small integer called a socket descriptor, which
occupies the same name space as file descriptors. The socket descriptor indexes
the array of open files in the u structure in the kernel and has a file structure
allocated for it. The FreeBSD file structure may point to a socket structure instead
of to an inode. In this case, certain socket information (such as the socket’s type,
its message count, and the data in its input and output queues) is kept directly
in the socket structure.

For another process to address a socket, the socket must have a name. A
name is bound to a socket by the bind() system call, which takes the socket
descriptor, a pointer to the name, and the length of the name as a byte string.
The contents and length of the byte string depend on the address format. The
connect() system call is used to initiate a connection. The arguments are

38 Appendix A BSD UNIX

syntactically the same as those for bind(); the socket descriptor represents the
local socket, and the address is that of the foreign socket to which the attempt
to connect is made.

Many processes that communicate using the socket IPC follow the client–
server model. In this model, the server process provides a service to the client
process. When the service is available, the server process listens on a well-
known address, and the client process uses connect() to reach the server.

A server process uses socket() to create a socket and bind() to bind the
well-known address of its service to that socket. Then, it uses the listen()
system call to tell the kernel that it is ready to accept connections from clients
and to specify how many pending connections the kernel should queue until
the server can service them. Finally, the server uses the accept() system
call to accept individual connections. Both listen() and accept() take as an
argument the socket descriptor of the original socket. The system call accept()
returns a new socket descriptor corresponding to the new connection; the
original socket descriptor is still open for further connections. The server
usually uses fork() to produce a new process after the accept() to service the
client while the original server process continues to listen for more connections.
There are also system calls for setting parameters of a connection and for
returning the address of the foreign socket after an accept().

When a connection for a socket type, such as a stream socket, is established,
the addresses of both endpoints are known, and no further addressing
information is needed to transfer data. The ordinary read() and write()
system calls may then be used to transfer data.

The simplest way to terminate a connection, and to destroy the associated
socket, is to use the close() system call on its socket descriptor. We may also
wish to terminate only one direction of communication of a duplex connection;
the shutdown() system call can be used for this purpose.

Some socket types, such as datagram sockets, do not support connections.
Instead, their sockets exchange datagrams that must be addressed individually.
The system calls sendto() and recvfrom() are used for such connections.
Both take as arguments a socket descriptor, a buffer pointer and length, and an
address-buffer pointer and length. The address buffer contains the appropriate
address for sendto() and is filled in with the address of the datagram just
received by recvfrom(). The number of data actually transferred is returned
by both system calls.

The select() system call can be used to multiplex data transfers on several
file descriptors and/or socket descriptors. It can even be used to allow one
server process to listen for client connections for many services and to fork()
a process for each connection as the connection is made. The server does a
socket(), bind(), and listen() for each service and then does a select()
on all the socket descriptors. When select() indicates activity on a descriptor,
the server does an accept() on it and forks a process on the new descriptor
returned by accept(), leaving the parent process to do a select() again.

A.9.2 Network Support

Almost all current UNIX systems support the UUCP network facilities, which
are mostly used over dial-up telephone lines to support the UUCP mail
network and the USENET news network. These are, however, rudimentary

A.9 Interprocess Communication 39

networking facilities; they do not support even remote login, much less
remote procedure calls or distributed file systems. These facilities are almost
completely implemented as user processes and are not part of the operating
system itself.

FreeBSD supports the DARPA Internet protocols UDP, TCP, IP, and ICMP on
a wide range of Ethernet, token-ring, and ARPANET interfaces. The framework
in the kernel to support these protocols is intended to facilitate the imple-
mentation of further protocols, and all protocols are accessible via the socket
interface. Rob Gurwitz of BBN wrote the first version of the code as an add-on
package for 4.1BSD.

The International Standards Organization’s (ISO) Open System Intercon-
nection (OSI) Reference Model for networking prescribes seven layers of
network protocols and strict methods of communication between them. An
implementation of a protocol may communicate only with a peer entity speak-
ing the same protocol at the same layer or with the protocol–protocol interface
of a protocol in the layer immediately above or below in the same system. The
ISO networking model is implemented in FreeBSD Reno and 4.4BSD.

The FreeBSD networking implementation, and to a certain extent the socket
facility, is more oriented toward the ARPANET Reference Model (ARM). The
ARPANET in its original form served as a proof of concept for many networking
ideas, such as packet switching and protocol layering. The ARPANET was retired
in 1988 because the hardware that supported it was no longer state of the art.
Its successors, such as the NSFNET and the Internet, are even larger and serve
as communications utilities for researchers and test-beds for Internet gateway
research. The ARM predates the ISO model; the ISO model was in large part
inspired by the ARPANET research.

Although the ISO model is often interpreted as setting a limit of one protocol
communicating per layer, the ARM allows several protocols in the same layer.
There are only four protocol layers in the ARM:

• Process/applications. This layer subsumes the application, presentation,
and session layers of the ISO model. Such user-level programs as the
file-transfer protocol (FTP) and Telnet (remote login) exist at this level.

• Host–host. This layer corresponds to ISO’s transport and the top part of
its network layers. Both the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) are in this layer, with TCP on top of IP. TCP corresponds
to an ISO transport protocol, and IP performs the addressing functions of
the ISO network layer.

• Network interface. This layer spans the lower part of the ISO network
layer and the entire data-link layer. The protocols involved here depend
on the physical network type. The ARPANET uses the IMP-Host protocols,
whereas an Ethernet uses Ethernet protocols.

• Network hardware. The ARM is primarily concerned with software, so
there is no explicit network hardware layer. However, any actual network
will have hardware corresponding to the ISO physical layer.

The networking framework in FreeBSD is more generalized than is either
the ISO model or the ARM, although it is most closely related to the ARM (Figure
A.12).

40 Appendix A BSD UNIX

ISO
reference
model

ARPANET
reference
model

4.2BSD
layers

example
layering

process
applications

host–host

network
interface

network
hardware

protocol

network
interfaces

network
hardware

sockets

user programs
and libraries

Ethernet
driver

interlan
controller

sock_stream

telnet

TCP

IP

application

presentation

session transport

hardware

network
data link

Figure A.12 Network reference models and layering.

User processes communicate with network protocols (and thus with other
processes on other machines) via the socket facility. This facility corresponds
to the ISO session layer, as it is responsible for setting up and controlling
communications.

Sockets are supported by protocols—possibly by several, layered one on
another. A protocol may provide services such as reliable delivery, suppression
of duplicate transmissions, flow control, and addressing, depending on the
socket type being supported and the services required by any higher protocols.

A protocol may communicate with another protocol or with the network
interface that is appropriate for the network hardware. There is little restriction
in the general framework on what protocols may communicate with what other
protocols or on how many protocols may be layered on top of one another. The
user process may, by means of the raw socket type, directly access any layer
of protocol from the uppermost used to support one of the other socket types,
such as streams, down to a raw network interface. This capability is used by
routing processes and also for new protocol development.

Most often, there is one network-interface driver per network controller
type. The network interface is responsible for handling characteristics spe-
cific to the local network being addressed. This arrangement ensures that
the protocols using the interface do not need to be concerned with these
characteristics.

The functions of the network interface depend largely on the network
hardware, which is whatever is necessary for the network. Some networks
may support reliable transmission at this level, but most do not. Some networks
provide broadcast addressing, but many do not.

The socket facility and the networking framework use a common set of
memory buffers, or mbufs. These are intermediate in size between the large
buffers used by the block I/O system and the C-lists used by character devices.
An mbuf is 128 bytes long; 112 bytes may be used for data, and the rest is used
for pointers to link the mbuf into queues and for indicators of how much of the
data area is actually in use.

Exercises 41

Data are ordinarily passed between layers—socket–protocol, protocol–
protocol, or protocol–network interface—in mbufs. The ability to pass the
buffers containing the data eliminates some data copying, but there is still
frequently a need to remove or add protocol headers. It is also convenient and
efficient for many purposes to be able to hold data that occupy an area the size
of the memory-management page. Thus, the data of an mbuf may reside not in
the mbuf itself but elsewhere in memory. There is an mbuf page table for this
purpose, as well as a pool of pages dedicated to mbuf use.

A.10 Summary

The early advantages of UNIX were that it was written in a high-level
language, was distributed in source form, and provided powerful operating-
system primitives on an inexpensive platform. These advantages led to
UNIX’s popularity at educational, research, and government institutions and
eventually in the commercial world. This popularity first produced many
strains of UNIX with varying and improved facilities.

UNIX provides a file system with tree-structured directories. The kernel
supports files as unstructured sequences of bytes. Direct access and sequential
access are supported through system calls and library routines.

Files are stored as an array of fixed-size data blocks with perhaps a trailing
fragment. The data blocks are found by pointers in the inode. Directory entries
point to inodes. Disk space is allocated from cylinder groups to minimize head
movement and to improve performance.

UNIX is a multiprogrammed system. Processes can easily create new
processes with the fork() system call. Processes can communicate with pipes
or, more generally, sockets. They may be grouped into jobs that may be
controlled with signals.

Processes are represented by two structures: the process structure and
the user structure. CPU scheduling is a priority algorithm with dynamically
computed priorities that reduces to round-robin scheduling in the extreme
case.

FreeBSD memory management uses swapping supported by paging. A
pagedaemon process uses a modified second-chance page-replacement algo-
rithm to keep enough free frames to support the executing processes.

Page and file I/O uses a block buffer cache to minimize the amount of actual
I/O. Terminal devices use a separate character-buffering system.

Networking support is one of the most important features in FreeBSD.
The socket concept provides the programming mechanism to access other
processes, even across a network. Sockets provide an interface to several sets
of protocols.

Exercises

A.1 Does FreeBSD give scheduling priority to I/O- or CPU-bound processes?
For what reason does it differentiate between these categories, and why
is one given priority over the other? How does it know which of these
categories fits a given process?

42 Appendix A BSD UNIX

A.2 Early UNIX systems used swapping for memory management, but
FreeBSD uses paging and swapping. Discuss the advantages and dis-
advantages of the two memory methods.

A.3 Describe the modifications to a file system that FreeBSD makes when a
process requests the creation of a new file /tmp/foo and writes to that file
sequentially until the file size reaches 20 KB.

A.4 Directory blocks in FreeBSD are written synchronously when they are
changed. Consider what would happen if they were written asyn-
chronously. Describe the state of the file system if a crash occurred
after all the files in a directory were deleted but before the directory
entry was updated on disk.

A.5 Describe the process to recreate the free list after a crash in 4.1BSD.

A.6 What effects on system performance would the following changes to
FreeBSD have? Explain your answers.

a. Clustering disk I/O into larger chunks

b. Implementing and using shared memory to pass data between
processes, rather than using RPC or sockets

c. Using the ISO seven-layer networking model, rather than the ARM
model

A.7 What socket type should be used to implement an intercomputer
file-transfer program? What type should be used for a program that
periodically tests to see whether another computer is up on the network?
Explain your answer.

Bibliographical Notes

[McKusick and Neville-Neil (2005)] provides a good general discussion of
FreeBSD. A modern scheduler for FreeBSD is described in [Roberson (2003)].
Locking in the Multithreaded FreeBSD Kernel is described in [Baldwin (2002)].

FreeBSD is described in The FreeBSD Handbook, which can be downloaded
from http://www.freebsd.org.

Bibliography

[Baldwin (2002)] J. Baldwin, “Locking in the Multithreaded FreeBSD Kernel”,
USENIX BSD (2002).

[McKusick and Neville-Neil (2005)] M. K. McKusick and G. V. Neville-Neil,
The Design and Implementation of the FreeBSD UNIX Operating System, Addison
Wesley (2005).

[Roberson (2003)] J. Roberson, “ULE: A Modern Scheduler For FreeBSD”,
Proceedings of the USENIX BSDCon Conference (2003), pages 17–28.

http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil The Design and Implementation of the FreeBSD UNIX Operating System 2005
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://www.freebsd.org
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://www.usenix.org/publications/library/proceedings/bsdcon02/baldwin.html
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil The Design and Implementation of the FreeBSD UNIX Operating System 2005
http://scholar.google.com/scholar?hl/en&q=M K McKusick and G V Neville Neil The Design and Implementation of the FreeBSD UNIX Operating System 2005
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html

	BSD UNIX
	UNIX History
	Design Principles
	Programmer Interface
	User Interface
	Process Management
	Memory Management
	File System
	I/O System
	Interprocess Communication
	Summary
	Exercises
	Bibliographical Notes

