
13CHAPTER

File-System
Interface

Practice Exercises

13.1 Some systems automatically delete all user �les when a user logs off or
a job terminates, unless the user explicitly requests that they be kept.
Other systems keep all �les unless the user explicitly deletes them.
Discuss the relative merits of each approach.

Answer:
Deleting all �les not speci�cally saved by the user has the advantage of
minimizing the �le space needed for each user by not saving unwanted
or unnecessary �les. Saving all �les unless speci�cally deleted is more
secure for the user in that the user cannot lose �les inadvertently by
forgetting to save them.

13.2 Why do some systems keep track of the type of a �le, while still others
leave it to the user and others simply do not implement multiple �le
types? Which system is “better”?

Answer:
Some systems allow different �le operations based on the type of the
�le (for instance, an ASCII �le can be read as a stream, while a database
�le can be read via an index to a block). Other systems leave such
interpretation of a �le’s data to the process and provide no help in
accessing the data. The method that is “better” depends on the needs
of the processes on the system and the demands the users place on the
operating system. If a system runsmostly database applications, it may
be more ef�cient for the operating system to implement a database-
type �le and provide operations, rather than making each program
implement the same thing (possibly in different ways). For general-
purpose systems, it may be better to implement only basic �le types to
keep the operating system size smaller and allow maximum freedom
to the processes on the system.

13.3 Similarly, some systems support many types of structures for a �le’s
data, while others simply support a stream of bytes. What are the
advantages and disadvantages of each approach?

555



556 Chapter 13 File-System Interface

Answer:
An advantage of having the system support different �le structures is
that the support comes from the system; individual applications are not
required to provide the support. In addition, if the system provides the
support for different �le structures, it can presumably implement the
support more ef�ciently than an application.

The disadvantage of having the system provide support for de�ned
�le types is that it increases the size of the system. In addition, applica-
tions that require �le types other than what is provided by the system
may not be able to run on the system.

An alternative strategy is for the operating system to de�ne no sup-
port for �le structures and instead treat all �les as a series of bytes.
This is the approach taken by UNIX systems. The advantage of this
approach is that it simpli�es the operating system support for �le sys-
tems, as the system no longer has to provide the structure for different
�le types. Furthermore, it allows applications to de�ne �le structures,
thereby avoiding the situation in which a systemmay not provide a �le
de�nition required for a speci�c application.

13.4 Could you simulate a multilevel directory structure with a single-level
directory structure inwhich arbitrarily long names can be used? If your
answer is yes, explain how you can do so, and contrast this scheme
with themultilevel directory scheme. If your answer is no, explainwhat
prevents your simulation’s success. Howwould your answer change if
�le names were limited to seven characters?

Answer:
If arbitrarily long names can be used, then it is possible to simulate a
multilevel directory structure. This can be done, for example, by using
the character “.” to indicate the end of a subdirectory. Thus, for example,
the name jim.java.F1 speci�es that F1 is a �le in subdirectory java, which
in turn is in the root directory jim.

If �le nameswere limited to seven characters, then this scheme could
not be utilized, and thus, in general, the answer is no. The next best
approach in this situation would be to use a speci�c �le as a symbol
table (directory) tomap arbitrarily long names (such as jim.java.F1) into
shorter arbitrary names (such as XX00743), which are then used for
actual �le access.

13.5 Explain the purpose of the open() and close() operations.

Answer:

• The open() operation informs the system that the named �le is
about to become active.

• The close() operation informs the system that the named �le is
no longer in active use by the user who issued the close operation.

13.6 In some systems, a subdirectory can be read and written by an autho-
rized user, just as ordinary �les can be.

a. Describe the protection problems that could arise.



Practice Exercises 557

b. Suggest a scheme for dealing with each of these protection prob-
lems.

Answer:

a. One piece of information kept in a directory entry is �le location.
If a user could modify this location, then he could access other
�les, defeating the access-protection scheme.

b. Do not allow the user to directly write onto the subdirectory.
Rather, provide system operations to do so.

13.7 Consider a system that supports 5,000 users. Suppose that you want to
allow 4,990 of these users to be able to access one �le.

a. How would you specify this protection scheme in UNIX?

b. Can you suggest another protection scheme that can be usedmore
effectively for this purpose than the scheme provided by UNIX?

Answer:

a. There are two methods for achieving this:

i. Create an access-control list with the names of all 4,990 users.

ii. Put these 4,990 users in one group, and set the group access
accordingly. This scheme cannot always be implemented,
since the number of user groups and the number of members
per group can be limited by the system.

b. The universal access to �les applies to all users unless their names
appear in the access-control list with different access permission.
Thus, you can simply put the names of the remaining 10 users in
the access-control list but give them no access privileges.

13.8 Researchers have suggested that, instead of having an access-control
list associated with each �le (specifying which users can access the �le,
and how), we should have a user control list associated with each user
(specifying which �les a user can access, and how). Discuss the relative
merits of these two schemes.

Answer:

• File-based control list. Since the access-control information is concen-
trated in one place, it is easier to change the information, and less
space is required.

• User-based control list. This requires less overhead when opening a
�le.




	File-System Interface
	Exercises


