
5CHAPTER

CPU
Scheduling

Practice Exercises

5.1 ACPU-scheduling algorithm determines an order for the execution of its
scheduled processes. Given n processes to be scheduled on one proces-
sor, howmany different schedules are possible? Give a formula in terms
of n.

Answer:
n! (n factorial = n × n – 1 × n – 2 × ... × 2 × 1).

5.2 Explain the difference betweenpreemptive and nonpreemptive schedul-
ing.

Answer:
Preemptive scheduling allows a process to be interrupted in themidst of
its execution, taking the CPU away and allocating it to another process.
Nonpreemptive scheduling ensures that a process relinquishes control
of the CPU only when it �nishes with its current CPU burst.

5.3 Suppose that the following processes arrive for execution at the times
indicated. Each processwill run for the amount of time listed. In answer-
ing the questions, use nonpreemptive scheduling, and base all decisions
on the information you have at the time the decision must be made.

Process Arrival Time Burst Time

P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P1 at time 0 because we did not know

115

116 Chapter 5 CPU Scheduling

that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CPU is left idle for the �rst
1 unit and then SJF scheduling is used. Remember that processes
P1 and P2 are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

Answer:

a. 10.53

b. 9.53

c. 6.86

Remember that turnaround time is �nishing time minus arrival time, so
you have to subtract the arrival times to compute the turnaround times.
FCFS is 11 if you forget to subtract arrival time.

5.4 Consider the following set of processes, with the length of the CPU burst
time given in milliseconds:

Process Burst Time Priority

P1 2 2
P2 1 1
P3 8 4
P4 4 2
P5 5 3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5,
all at time 0.

a. Draw four Gantt charts that illustrate the execution of these pro-
cesses using the following scheduling algorithms: FCFS, SJF, non-
preemptive priority (a larger priority number implies a higher
priority), and RR (quantum = 2).

b. What is the turnaround time of each process for each of the
scheduling algorithms in part a?

c. What is the waiting time of each process for each of these schedul-
ing algorithms?

d. Which of the algorithms results in the minimum average waiting
time (over all processes)?

Answer:

a. The four Gantt charts:

P

201511

P 2 P 3 P 4 P 5

2 3

1 2 3 4 5

0 2 3 11 15

Practice Exercises 117

P

201511

P 2P 3P 4 P 5

2 3

2 1 4 5 3

0 1 3 7 12 20

 P
 3

0 8 13 15 19 20

P
5

P
1

P P
4 2

 P P P
1 2 3

0 2 3 5 7 9 11 13 15 1817 20

P P P
4 5 3

P P
4 5

P P P
3 5 3

b. Turnaround time:

FCFS SJF Priority RR

P1 2 3 15 2
P2 3 1 20 3
P3 11 20 8 20
P4 15 7 19 13
P5 20 12 13 18

c. Waiting time (turnaround time minus burst time):

FCFS SJF Priority RR

P1 0 1 13 0
P2 2 0 19 2
P3 3 12 0 12
P4 11 3 15 9
P5 15 7 8 13

d. SJF has the shortest wait time.

5.5 The following processes are being scheduled using a preemptive, round-
robin scheduling algorithm.

Process Priority Burst Arrival

P1 40 20 0
P2 30 25 25
P3 30 25 30
P4 35 15 60
P5 5 10 100
P6 10 10 105

Each process is assigned a numerical priority,with a higher number indi-
cating a higher relative priority. In addition to the processes listed above,
the system also has an idle task (which consumes no CPU resources and

118 Chapter 5 CPU Scheduling

is identi�ed as Pidle). This task has priority 0 and is scheduled when-
ever the system has no other available processes to run. The length of a
time quantum is 10 units. If a process is preempted by a higher-priority
process, the preempted process is placed at the end of the queue.

a. Show the scheduling order of the processes using a Gantt chart.

b. What is the turnaround time for each process?

c. What is the waiting time for each process?

d. What is the CPU utilization rate?

Answer:

a. The Gantt chart:

P1 idle

553525200

P3P2 idleP2 P2P3P3 P5 P6 P5

60 75 80 90 100 105 115 12045

P4

b. P1: 20-0 - 20, P2: 80-25 = 55, P3: 90 - 30 = 60, P4: 75-60 = 15, P5:
120-100 = 20, P6: 115-105 = 10

c. P1: 0, p2: 40, P3: 35, P4: 0, P5: 10, P6: 0

d. 105/120 = 87.5 percent.

5.6 What advantage is there in having different time-quantum sizes at dif-
ferent levels of a multilevel queueing system?

Answer:
Processes that need more frequent servicing—for instance, interactive
processes such as editors—can be in a queuewith a small time quantum.
Processes with no need for frequent servicing can be in a queue with
a larger quantum, requiring fewer context switches to complete the
processing and thus making more ef�cient use of the computer.

5.7 Many CPU-scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to de�ne the number of queues,
the scheduling algorithms for each queue, the criteria used to move
processes between queues, and so on.
These algorithms are thus really sets of algorithms (for example, the set

of RR algorithms for all time slices, and so on). One set of algorithmsmay
include another (for example, the FCFS algorithm is the RR algorithm
with an in�nite time quantum). What (if any) relation holds between
the following pairs of algorithm sets?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

Practice Exercises 119

Answer:

a. The shortest job has the highest priority.

b. The lowest level of MLFQ is FCFS.

c. FCFS gives the highest priority to the job that has been in existence
the longest.

d. None.

5.8 Suppose that a CPU scheduling algorithm favors those processes that
have used the least processor time in the recent past. Why will this
algorithm favor I/O-bound programs and yet not permanently starve
CPU-bound programs?

Answer:
It will favor the I/O-bound programs because of the relatively short
CPU bursts requested by them; however, the CPU-bound programs will
not starve, because the I/O-bound programs will relinquish the CPU

relatively often to do their I/O.

5.9 Distinguish between PCS and SCS scheduling.

Answer:
PCS scheduling is local to the process. It is how the thread library sched-
ules threads onto available LWPs. SCS scheduling is used when the oper-
ating system schedules kernel threads. On systems using either the
many-to-one or the many-to-many model, the two scheduling models
are fundamentally different. On systems using the one-to-one model,
PCS and SCS are the same.

5.10 The traditionalUNIX scheduler enforces an inverse relationship between
priority numbers and priorities: the higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recalculated.

Assume that recent CPU usage for process P1 is 40, for process P2 is 18,
and for process P3 is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?

Answer:
The priorities assigned to the processes will be 80, 69, and 65, respec-
tively. The scheduler lowers the relative priority of CPU-bound pro-
cesses.

	CPU Scheduling
	Exercises

