
6CHAPTER

Synchronization
Tools

Practice Exercises

6.1 In Section 6.4, we mentioned that disabling interrupts frequently can
affect the system’s clock. Explain why this can occur and how such
effects can be minimized.

Answer:
The system clock is updated at every clock interrupt. If interrupts were
disabled—particularly for a long period of time—the system clock
could easily lose the correct time. The system clock is also used for
scheduling purposes. For example, the time quantum for a process is
expressed as a number of clock ticks. At every clock interrupt, the sched-
uler determines if the time quantum for the currently running process
has expired. If clock interrupts were disabled, the scheduler could not
accurately assign time quanta. This effect can beminimized by disabling
clock interrupts for only very short periods.

6.2 What is the meaning of the term busy waiting? What other kinds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

Answer:
Busywaitingmeans that a process iswaiting for a condition to be satis�ed
in a tight loopwithout relinquishing the processor. One strategy to avoid
busywaiting temporarily puts the waiting process to sleep and awakens
itwhen the appropriate program state is reached, but this solution incurs
the overhead associated with putting the process to sleep and later
waking it up.

6.3 Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

Answer:
Spinlocks are not appropriate for single-processor systems because the
condition that would break a process out of the spinlock can be obtained
only by executing a different process. If the process is not relinquishing
the processor, other processes do not get the opportunity to set the

269

270 Chapter 6 Synchronization Tools

program condition required for the �rst process to make progress. In
a multiprocessor system, other processes execute on other processors
and therefore can modify the program state in order to release the �rst
process from the spinlock.

6.4 Show that, if the wait() and signal() semaphore operations are not
executed atomically, then mutual exclusion may be violated.

Answer:
A wait() operation atomically decrements the value associated with
a semaphore. If two wait() operations are executed on a semaphore
when its value is 1 and the operations are not performed atomically,
then both operations might decrement the semaphore value, thereby
violating mutual exclusion.

6.5 Illustrate how a binary semaphore can be used to implement mutual
exclusion among n processes.

Answer:
The n processes share a semaphore, mutex, initialized to 1. Each process
Pi is organized as follows:

do {
wait(mutex);

/* critical section */

signal(mutex);

/* remainder section */
} while (true);

6.6 Race conditions are possible in many computer systems. Consider a
banking system that maintains an account balance with two functions:
deposit(amount) and withdraw(amount). These two functions are
passed the amount that is to be deposited or withdrawn from the bank
account balance. Assume that a husband and wife share a bank account.
Concurrently, the husband calls the withdraw() function, and the wife
calls deposit(). Describe how a race condition is possible and what
might be done to prevent the race condition from occurring.

Answer:
Assume that the balance in the account is $250.00 and that the husband
calls withdraw($50) and the wife calls deposit($100). Obviously, the
correct value should be $300.00. Since these two transactions will be seri-
alized, the local value of the balance for the husband becomes $200.00,
but before he can commit the transaction, the deposit(100) operation
takes place and updates the shared value of the balance to $300.00. We
then switch back to the husband, and the value of the shared balance is
set to $200.00—obviously an incorrect value.

	Synchronization Tools
	Exercises

