
7CHAPTER

Synchronization
Examples

Practice Exercises

7.1 Explain why Windows and Linux implement multiple locking mech-
anisms. Describe the circumstances under which they use spinlocks,
mutex locks, semaphores, and condition variables. In each case, explain
why the mechanism is needed.

Answer:
These operating systems provide different lockingmechanisms depend-
ing on the application developers’ needs. Spinlocks are useful for mul-
tiprocessor systems where a thread can run in a busy loop (for a short
period of time) rather than incurring the overhead of being put in a sleep
queue. Mutexes are useful for locking resources. Solaris 2 uses adaptive
mutexes, meaning that the mutex is implemented with a spinlock on
multiprocessor machines. Semaphores and condition variables are more
appropriate tools for synchronization when a resource must be held for
a long period of time, since spinning is inef�cient for a long duration.

7.2 Windows provides a lightweight synchronization tool called slim reader
–writer locks. Whereas most implementations of reader–writer locks
favor either readers or writers, or perhaps order waiting threads using a
FIFO policy, slim reader–writer locks favor neither readers nor writers,
nor are waiting threads ordered in a FIFO queue. Explain the bene�ts of
providing such a synchronization tool.

Answer:
Simplicity. If reader–writer locks provide fairness or favor readers or
writers, they involve more overhead. Providing such a simple synchro-
nizationmechanismmakes access to the lock fast. Use of this lockmay be
most appropriate for situations where reader–writer locks are needed,
but quickly acquiring and releasing them is similarly important.

7.3 Describe what changes would be necessary to the producer and con-
sumer processes in Figure 7.1 and Figure 7.2 so that a mutex lock could
be used instead of a binary semaphore.

Answer:

271



272 Chapter 7 Synchronization Examples

The calls to wait(mutex) and signal(mutex) need to be replaced
so that they are now calls to the API for a mutex lock, such as
acquire(mutex) and release()mutex.

7.4 Describe how deadlock is possible with the dining-philosophers prob-
lem.

Answer:
If all philosophers simultaneously pick up their left forks, when they
turn to pick up their right forks they will realize they are unavailable,
and will block while waiting for it to become available. This blocking
while waiting for a resource to become available is a deadlocked situa-
tion.

7.5 Explain the difference between signaled and non-signaled states with
Windows dispatcher objects.

Answer:
An object that is in the signaled state is available, and a thread will not
block when it tries to acquire it. When the lock is acquired, it is in the
non-signaled state. When the lock is released, it transitions back to the
signaled state.

7.6 Assume val is an atomic integer in a Linux system. What is the value of
val after the following operations have been completed?

atomic set(&val,10);
atomic sub(8,&val);
atomic inc(&val);
atomic inc(&val);
atomic add(6,&val);
atomic sub(3,&val);

Answer:
The �nal value of val is 10 - 8 + 1 + 1 + 6 - 3 = 7


	Synchronization Examples
	Exercises


