СНА Virtual Memory

Exercises

- **10.14** Assume that a program has just referenced an address in virtual memory. Describe a scenario in which each of the following can occur. (If no such scenario can occur, explain why.)
 - TLB miss with no page fault
 - TLB miss with page fault
 - TLB hit with no page fault
 - TLB hit with page fault
- **10.15** A simplified view of thread states is *ready*, *running*, and *blocked*, where a thread is either ready and waiting to be scheduled, is running on the processor, or is blocked (for example, waiting for I/O).

Assuming a thread is in the *running* state, answer the following questions, and explain your answers:

- a. Will the thread change state if it incurs a page fault? If so, to what state will it change?
- b. Will the thread change state if it generates a TLB miss that is resolved in the page table? If so, to what state will it change?
- c. Will the thread change state if an address reference is resolved in the page table? If so, to what state will it change?

10.16 Consider a system that uses pure demand paging.

- a. When a process first starts execution, how would you characterize the page-fault rate?
- b. Once the working set for a process is loaded into memory, how would you characterize the page-fault rate?
- c. Assume that a process changes its locality and the size of the new working set is too large to be stored in available free memory. Identify some options system designers could choose from to handle this situation.
- **10.17** The following is a page table for a system with 12-bit virtual and physical addresses and 256-byte pages. Free page frames are to be allocated in the order 9, F, D. A dash for a page frame indicates that the page is not in memory.

Page	Page Frame
0	0 x 4
1	0 x B
2	0 x A
3	-
4	-
5	0 x 2
6	-
7	0 x 0
8	0 x C
9	0 x 1

Convert the following virtual addresses to their equivalent physical addresses in hexadecimal. All numbers are given in hexadecimal. In the case of a page fault, you must use one of the free frames to update the page table and resolve the logical address to its corresponding physical address.

- 0x2A1
- 0x4E6
- 0x94A
- 0x316
- **10.18** What is the copy-on-write feature, and under what circumstances is its use beneficial? What hardware support is required to implement this feature?
- **10.19** A certain computer provides its users with a virtual memory space of 2^{32} bytes. The computer has 2^{22} bytes of physical memory. The virtual

memory is implemented by paging, and the page size is 4,096 bytes. A user process generates the virtual address 11123456. Explain how the system establishes the corresponding physical location. Distinguish between software and hardware operations.

10.20 Assume that we have a demand-paged memory. The page table is held in registers. It takes 8 milliseconds to service a page fault if an empty frame is available or if the replaced page is not modified and 20 milliseconds if the replaced page is modified. Memory-access time is 100 nanoseconds.

Assume that the page to be replaced is modified 70 percent of the time. What is the maximum acceptable page-fault rate for an effective access time of no more than 200 nanoseconds?

Page	Page Frame	Reference Bit
0	9	0
1	-	0
2	10	0
3	15	0
4	б	0
5	13	0
6	8	0
7	12	0
8	7	0
9	-	0
10	5	0
11	4	0
12	1	0
13	0	0
14	-	0
15	2	0

10.21 Consider the page table for a system with 16-bit virtual and physical addresses and 4,096-byte pages.

The reference bit for a page is set to 1 when the page has been referenced. Periodically, a thread zeroes out all values of the reference bit. A dash for a page frame indicates that the page is not in memory. The page-replacement algorithm is localized LRU, and all numbers are provided in decimal.

a. Convert the following virtual addresses (in hexadecimal) to the equivalent physical addresses. You may provide answers in either

hexadecimal or decimal. Also set the reference bit for the appropriate entry in the page table.

- 0x621C
- 0xF0A3
- 0xBC1A
- 0x5BAA
- 0x0BA1
- b. Using the above addresses as a guide, provide an example of a logical address (in hexadecimal) that results in a page fault.
- c. From what set of page frames will the LRU page-replacement algorithm choose in resolving a page fault?
- **10.22** When a page fault occurs, the process requesting the page must block while waiting for the page to be brought from disk into physical memory. Assume that there exists a process with five user-level threads and that the mapping of user threads to kernel threads is many to one. If one user thread incurs a page fault while accessing its stack, would the other user threads belonging to the same process also be affected by the page fault—that is, would they also have to wait for the faulting page to be brought into memory? Explain.
- **10.23** Apply the (1) FIFO, (2) LRU, and (3) optimal (OPT) replacement algorithms for the following page-reference strings:
 - 2,6,9,2,4,2,1,7,3,0,5,2,1,2,9,5,7,3,8,5
 - 0, 6, 3, 0, 2, 6, 3, 5, 2, 4, 1, 3, 0, 6, 1, 4, 2, 3, 5, 7
 - 3, 1, 4, 2, 5, 4, 1, 3, 5, 2, 0, 1, 1, 0, 2, 3, 4, 5, 0, 1
 - 4, 2, 1, 7, 9, 8, 3, 5, 2, 6, 8, 1, 0, 7, 2, 4, 1, 3, 5, 8
 - 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0

Indicate the number of page faults for each algorithm assuming demand paging with three frames.

- **10.24** Assume that you are monitoring the rate at which the pointer in the clock algorithm moves. (The pointer indicates the candidate page for replacement.) What can you say about the system if you notice the following behavior:
 - a. Pointer is moving fast.
 - b. Pointer is moving slow.
- **10.25** Discuss situations in which the least frequently used (LFU) page-replacement algorithm generates fewer page faults than the least recently used (LRU) page-replacement algorithm. Also discuss under what circumstances the opposite holds.
- **10.26** Discuss situations in which the most frequently used (MFU) pagereplacement algorithm generates fewer page faults than the least

recently used (LRU) page-replacement algorithm. Also discuss under what circumstances the opposite holds.

- **10.27** The KHIE (pronounced "k-hi") operating system uses a FIFO replacement algorithm for resident pages and a free-frame pool of recently used pages. Assume that the free-frame pool is managed using the LRU replacement policy. Answer the following questions:
 - a. If a page fault occurs and the page does not exist in the free-frame pool, how is free space generated for the newly requested page?
 - b. If a page fault occurs and the page exists in the free-frame pool, how are the resident page set and the free-frame pool managed to make space for the requested page?
 - c. To what does the system degenerate if the number of resident pages is set to one?
 - d. To what does the system degenerate if the number of pages in the free-frame pool is zero?
- **10.28** Consider a demand-paging system with the following time-measured utilizations:

CPU utilization	20%
Paging disk	97.7%
Other I/O devices	5%

For each of the following, indicate whether it will (or is likely to) improve CPU utilization. Explain your answers.

- a. Install a faster CPU.
- b. Install a bigger paging disk.
- c. Increase the degree of multiprogramming.
- d. Decrease the degree of multiprogramming.
- e. Install more main memory.
- f. Install a faster hard disk or multiple controllers with multiple hard disks.
- g. Add prepaging to the page-fetch algorithms.
- h. Increase the page size.
- **10.29** Explain why minor page faults take less time to resolve than major page faults.
- **10.30** Explain why compressed memory is used in operating systems for mobile devices.
- **10.31** Suppose that a machine provides instructions that can access memory locations using the one-level indirect addressing scheme. What sequence of page faults is incurred when all of the pages of a program are currently nonresident and the first instruction of the program is an

indirect memory-load operation? What happens when the operating system is using a per-process frame allocation technique and only two pages are allocated to this process?

10.32 Consider the page references:

What pages represent the locality at time (*X*)?

- **10.33** Suppose that your replacement policy (in a paged system) is to examine each page regularly and to discard that page if it has not been used since the last examination. What would you gain and what would you lose by using this policy rather than LRU or second-chance replacement?
- **10.34** A page-replacement algorithm should minimize the number of page faults. We can achieve this minimization by distributing heavily used

pages evenly over all of memory, rather than having them compete for a small number of page frames. We can associate with each page frame a counter of the number of pages associated with that frame. Then, to replace a page, we can search for the page frame with the smallest counter.

- a. Define a page-replacement algorithm using this basic idea. Specifically address these problems:
 - What is the initial value of the counters?
 - When are counters increased?
 - When are counters decreased?
 - How is the page to be replaced selected?
- b. How many page faults occur for your algorithm for the following reference string with four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

- c. What is the minimum number of page faults for an optimal pagereplacement strategy for the reference string in part b with four page frames?
- **10.35** Consider a demand-paging system with a paging disk that has an average access and transfer time of 20 milliseconds. Addresses are translated through a page table in main memory, with an access time of 1 microsecond per memory access. Thus, each memory reference through the page table takes two accesses. To improve this time, we have added an associative memory that reduces access time to one memory reference if the page-table entry is in the associative memory. Assume that 80 percent of the accesses are in the associative memory and that, of those remaining, 10 percent (or 2 percent of the total) cause page faults. What is the effective memory access time?
- **10.36** What is the cause of thrashing? How does the system detect thrashing? Once it detects thrashing, what can the system do to eliminate this problem?
- **10.37** Is it possible for a process to have two working sets, one representing data and another representing code? Explain.
- **10.38** Consider the parameter Δ used to define the working-set window in the working-set model. When Δ is set to a low value, what is the effect on the page-fault frequency and the number of active (nonsuspended) processes currently executing in the system? What is the effect when Δ is set to a very high value?
- **10.39** In a 1,024-KB segment, memory is allocated using the buddy system. Using Figure 10.26 as a guide, draw a tree illustrating how the following memory requests are allocated:
 - Request 5-KB
 - Request 135 KB.

- Request 14 KB.
- Request 3 KB.
- Request 12 KB.

Next, modify the tree for the following releases of memory. Perform coalescing whenever possible:

- Release 3 KB.
- Release 5 KB.
- Release 14 KB.
- Release 12 KB.
- **10.40** A system provides support for user-level and kernel-level threads. The mapping in this system is one to one (there is a corresponding kernel thread for each user thread). Does a multithreaded process consist of (a) a working set for the entire process or (b) a working set for each thread? Explain
- **10.41** The slab-allocation algorithm uses a separate cache for each different object type. Assuming there is one cache per object type, explain why this scheme doesn't scale well with multiple CPUs. What could be done to address this scalability issue?
- **10.42** Consider a system that allocates pages of different sizes to its processes. What are the advantages of such a paging scheme? What modifications to the virtual memory system would be needed to provide this functionality?