
4CHAPTER

Threads &
Concurrency

Exercises

4.8 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

4.9 Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

4.10 Which of the following components of program state are shared across
threads in a multithreaded process?

a. Register values

b. Heap memory

c. Global variables

d. Stack memory

4.11 Can a multithreaded solution using multiple user-level threads
achieve better performance on a multiprocessor system than on a
single-processor system? Explain.

4.12 In Chapter 3, we discussed Google’s Chrome browser and its practice
of opening each new tab in a separate process. Would the same bene�ts
have been achieved if, instead, Chrome had been designed to open each
new tab in a separate thread? Explain.

4.13 Is it possible to have concurrency but not parallelism? Explain.

4.14 UsingAmdahl’s Law, calculate the speedup gain for the following appli-
cations:

• 40 percent parallel with (a) eight processing cores and (b) sixteen
processing cores

• 67 percent parallel with (a) two processing cores and (b) four pro-
cessing cores

15

16 Chapter 4 Threads & Concurrency

• 90 percent parallel with (a) four processing cores and (b) eight pro-
cessing cores

4.15 Determine if the following problems exhibit task or data parallelism:

• Using a separate thread to generate a thumbnail for each photo in a
collection

• Transposing a matrix in parallel

• Anetworked application where one thread reads from the network
and another writes to the network

• The fork-join array summation application described in Section 4.5.2

• The Grand Central Dispatch system

4.16 A system with two dual-core processors has four processors available
for scheduling. A CPU-intensive application is running on this system.
All input is performed at program start-up, when a single �le must be
opened. Similarly, all output is performed just before the program termi-
nates, when the program resultsmust be written to a single �le. Between
start-up and termination, the program is entirely CPU-bound. Your task
is to improve the performance of this application by multithreading it.
The application runs on a system that uses the one-to-one threading
model (each user thread maps to a kernel thread).

• Howmany threadswill you create to perform the input and output?
Explain.

• How many threads will you create for the CPU-intensive portion of
the application? Explain.

4.17 Consider the following code segment:

pid t pid;

pid = fork();
if (pid == 0) { /* child process */

fork();
thread create(. . .);

}
fork();

a. How many unique processes are created?

b. How many unique threads are created?

4.18 As described in Section 4.7.2, Linux does not distinguish between pro-
cesses and threads. Instead, Linux treats both in the sameway, allowing a
task to bemore akin to a process or a thread depending on the set of �ags
passed to the clone() system call. However, other operating systems,
such asWindows, treat processes and threads differently. Typically, such
systems use a notation in which the data structure for a process contains
pointers to the separate threads belonging to the process. Contrast these
two approaches for modeling processes and threads within the kernel.

Exercises 17

#include <pthread.h>
#include <stdio.h>

int value = 0;
void *runner(void *param); /* the thread */

int main(int argc, char *argv[])
{
pid t pid;
pthread t tid;
pthread attr t attr;

pid = fork();

if (pid == 0) { /* child process */
pthread attr init(&attr);
pthread create(&tid,&attr,runner,NULL);
pthread join(tid,NULL);
printf("CHILD: value = %d",value); /* LINE C */

}
else if (pid > 0) { /* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE P */

}
}

void *runner(void *param) {
value = 5;
pthread exit(0);

}

Figure 4.22 C program for Exercise 4.19.

4.19 The program shown in Figure 4.23 uses the Pthreads API. What would
be the output from the program at LINE C and LINE P?

4.20 Consider a multicore system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be greater than the number of processing cores
in the system. Discuss the performance implications of the following
scenarios.

a. The number of kernel threads allocated to the program is less than
the number of processing cores.

b. The number of kernel threads allocated to the program is equal to
the number of processing cores.

18 Chapter 4 Threads & Concurrency

int oldstate;

pthread setcancelstate(PTHREAD CANCEL DISABLE, &oldstate);

/* What operations would be performed here? */

pthread setcancelstate(PTHREAD CANCEL ENABLE, &oldstate);

Figure 4.23 C program for Exercise 4.21.

c. The number of kernel threads allocated to the program is greater
than the number of processing cores but less than the number of
user-level threads.

4.21 Pthreads provides an API for managing thread cancellation. The
pthread setcancelstate() function is used to set the cancellation
state. Its prototype appears as follows:

pthread setcancelstate(int state, int *oldstate)

The two possible values for the state are PTHREAD CANCEL ENABLE and
PTHREAD CANCEL DISABLE.

Using the code segment shown in Figure 4.24, provide examples of
two operations that would be suitable to perform between the calls to
disable and enable thread cancellation.

	Threads & Concurrency
	Exercises

