
6CHAPTER

Synchronization
Tools

Exercises

6.12 The pseudocode of Figure 6.15 illustrates the basic push() and pop()
operations of an array-based stack. Assuming that this algorithm could
be used in a concurrent environment, answer the following questions:

a. What data have a race condition?

b. How could the race condition be �xed?

6.13 Race conditions are possible in many computer systems. Consider an
online auction system where the current highest bid for each item
must be maintained. A person who wishes to bid on an item calls the
bid(amount) function, which compares the amount being bid to the
current highest bid. If the amount exceeds the current highest bid, the
highest bid is set to the new amount. This is illustrated below:

void bid(double amount) {
if (amount > highestBid)

highestBid = amount;
}

Describe how a race condition is possible in this situation and what
might be done to prevent the race condition from occurring.

6.14 The following program example can be used to sum the array values
of sizeN elements in parallel on a system containingN computing cores
(there is a separate processor for each array element):

for j = 1 to log 2(N) {
for k = 1 to N {

if ((k + 1) % pow(2,j) == 0) {
values[k] += values[k - pow(2,(j-1))]

}
}

}

33



34 Chapter 6 Synchronization Tools

This has the effect of summing the elements in the array as a series
of partial sums, as shown in Figure 6.16. After the code has executed,
the sum of all elements in the array is stored in the last array location.
Are there any race conditions in the above code example? If so, identify
where they occur and illustrate with an example. If not, demonstrate
why this algorithm is free from race conditions.

6.15 The compare and swap() instruction can be used to design lock-free
data structures such as stacks, queues, and lists. The program example
shown in Figure 6.17 presents a possible solution to a lock-free stack
using CAS instructions, where the stack is represented as a linked list
of Node elements with top representing the top of the stack. Is this
implementation free from race conditions?

push(item) {
acquire();
if (top < SIZE) {

stack[top] = item;
top++;

}
else

ERROR
release();

}

pop() {
acquire();
if (!is empty()) {

top--;
item = stack[top];
release();
return item;

}
else

ERROR
release();

}

is empty() {
if (top == 0)

return true;
else

return false;
}

Figure 6.15 Array-based stack for Exercise 6.12.



Exercises 35

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

5 10 15 20

130

180

3025

5 15 15

5 15 15

5 15 15

25

25

25

55

55

55

35 35

35

35

75

40

50

50

35

+

+

+ + +

+

+

Figure 6.16 Summing an array as a series of partial sums for Exercise 6.14.

6.16 One approach for using compare and swap() for implementing a spin-
lock is as follows:

void lock spinlock(int *lock) {
while (compare and swap(lock, 0, 1) != 0)

; /* spin */
}

A suggested alternative approach is to use the “compare and compare-
and-swap” idiom,which checks the status of the lock before invoking the
compare and swap() operation. (The rationale behind this approach is
to invoke compare and swap()only if the lock is currently available.)
This strategy is shown below:

void lock spinlock(int *lock) {
{

while (true) {
if (*lock == 0) {

/* lock appears to be available */

if (!compare and swap(lock, 0, 1))
break;

}
}

}

Does this “compare and compare-and-swap” idiom work appropriately
for implementing spinlocks? If so, explain. If not, illustrate how the
integrity of the lock is compromised.



36 Chapter 6 Synchronization Tools

typedef struct node {
value t data;
struct node *next;

} Node;

Node *top; // top of stack

void push(value t item) {
Node *old node;
Node *new node;

new node = malloc(sizeof(Node));
new node->data = item;

do {
old node = top;
new node->next = old node;

}
while (compare and swap(top,old node,new node) != old node);

}

value t pop() {
Node *old node;
Node *new node;

do {
old node = top;
if (old node == NULL)

return NULL;
new node = old node->next;

}
while (compare and swap(top,old node,new node) != old node);

return old node->data;
}

Figure 6.17 Lock-free stack for Exercise 6.15.

6.17 Some semaphore implementations provide a function getValue() that
returns the current value of a semaphore. This functionmay, for instance,
be invoked prior to calling wait() so that a processwill only call wait()



Exercises 37

while (true) {
flag[i] = true;

while (flag[j]) {
if (turn == j) {

flag[i] = false;
while (turn == j)

; /* do nothing */
flag[i] = true;

}
}

/* critical section */

turn = j;
flag[i] = false;

/* remainder section */
}

Figure 6.18 The structure of process Pi in Dekker’s algorithm.

if the value of the semaphore is > 0, thereby preventing blocking while
waiting for the semaphore. For example:

if (getValue(&sem) > 0)
wait(&sem);

Many developers argue against such a function and discourage its use.
Describe a potential problem that could occur when using the function
getValue() in this scenario.

6.18 The �rst known correct software solution to the critical-section problem
for two processes was developed by Dekker. The two processes, P0 and
P1, share the following variables:

boolean flag[2]; /* initially false */
int turn;

The structure of process Pi (i == 0 or 1) is shown in Figure 6.18. The
other process is Pj (j == 1 or 0). Prove that the algorithm satis�es all

three requirements for the critical-section problem.

6.19 The �rst known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n − 1 turns was
presented by Eisenberg andMcGuire. The processes share the following
variables:



38 Chapter 6 Synchronization Tools

while (true) {
while (true) {

flag[i] = want in;
j = turn;

while (j != i) {
if (flag[j] != idle) {

j = turn;
else

j = (j + 1) % n;
}

flag[i] = in cs;
j = 0;

while ( (j < n) && (j == i || flag[j] != in cs))
j++;

if ( (j >= n) && (turn == i || flag[turn] == idle))
break;

}

/* critical section */

j = (turn + 1) % n;

while (flag[j] == idle)
j = (j + 1) % n;

turn = j;
flag[i] = idle;

/* remainder section */
}

Figure 6.19 The structure of process Pi in Eisenberg and McGuire’s algorithm.

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

All the elements of flag are initially idle. The initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in
Figure 6.19. Prove that the algorithm satis�es all three requirements for
the critical-section problem.



Exercises 39

6.20 Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the synchro-
nization primitives are to be used in user-level programs.

6.21 Consider how to implement a mutex lock using the com-
pare and swap() instruction. Assume that the following structure
de�ning the mutex lock is available:

typedef struct {
int available;

} lock;

The value (available == 0) indicates that the lock is available, and
a value of 1 indicates that the lock is unavailable. Using this struct,
illustrate how the following functions can be implemented using the
compare and swap() instruction:

• void acquire(lock *mutex)

• void release(lock *mutex)

Be sure to include any initialization that may be necessary.

6.22 Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

6.23 The implementation of mutex locks provided in Section 6.5 suffers from
busy waiting. Describe what changes would be necessary so that a
process waiting to acquire a mutex lock would be blocked and placed
into a waiting queue until the lock became available.

6.24 Assume that a system has multiple processing cores. For each of the
following scenarios, describe which is a better locking mechanism—a
spinlock or a mutex lock where waiting processes sleep while waiting
for the lock to become available:

• The lock is to be held for a short duration.

• The lock is to be held for a long duration.

• A thread may be put to sleep while holding the lock.

6.25 Assume that a context switch takes T time. Suggest an upper bound
(in terms of T) for holding a spinlock. If the spinlock is held for any
longer, a mutex lock (where waiting threads are put to sleep) is a better
alternative.

6.26 A multithreaded web server wishes to keep track of the number of
requests it services (known as hits). Consider the two following strate-
gies to prevent a race condition on the variable hits. The �rst strategy
is to use a basic mutex lock when updating hits:

int hits;
mutex lock hit lock;

hit lock.acquire();



40 Chapter 6 Synchronization Tools

#define MAX PROCESSES 255
int number of processes = 0;

/* the implementation of fork() calls this function */
int allocate process() {
int new pid;

if (number of processes == MAX PROCESSES)
return -1;

else {
/* allocate necessary process resources */
++number of processes;

return new pid;
}

}

/* the implementation of exit() calls this function */
void release process() {

/* release process resources */
--number of processes;

}

Figure 6.20 Allocating and releasing processes for Exercise 6.27.

hits++;
hit lock.release();

A second strategy is to use an atomic integer:

atomic t hits;
atomic inc(&hits);

Explain which of these two strategies is more ef�cient.

6.27 Consider the code example for allocating and releasing processes shown
in Figure 6.20.

a. Identify the race condition(s).

b. Assume you have a mutex lock named mutex with the operations
acquire() and release(). Indicate where the locking needs to be
placed to prevent the race condition(s).

c. Could we replace the integer variable

int number of processes = 0

with the atomic integer

atomic t number of processes = 0



Exercises 41

to prevent the race condition(s)?

6.28 Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection is
released. Illustrate how semaphores can be used by a server to limit the
number of concurrent connections.

6.29 In Section 6.7, we use the following illustration as an incorrect use of
semaphores to solve the critical-section problem:

wait(mutex);
...

critical section
...

wait(mutex);

Explain why this is an example of a liveness failure.

6.30 Demonstrate that monitors and semaphores are equivalent to the degree
that they can be used to implement solutions to the same types of syn-
chronization problems.

6.31 Describe how the signal() operation associated with monitors differs
from the corresponding operation de�ned for semaphores.

6.32 Suppose the signal() statement can appear only as the last statement
in a monitor function. Suggest how the implementation described in
Section 6.7 can be simpli�ed in this situation.

6.33 Consider a system consisting of processesP1,P2, ...,Pn, each ofwhich has
a unique priority number. Write a monitor that allocates three identical
printers to these processes, using the priority numbers for deciding the
order of allocation.

6.34 A �le is to be shared among different processes, each of which has
a unique number. The �le can be accessed simultaneously by several
processes, subject to the following constraint: the sum of all unique
numbers associated with all the processes currently accessing the �le
must be less than n. Write a monitor to coordinate access to the �le.

6.35 When a signal is performedon a condition inside amonitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. Howwould the solution to the preceding exercise differ
with these two different ways in which signaling can be performed?

6.36 Design an algorithm for a monitor that implements an alarm clock that
enables a calling program to delay itself for a speci�ed number of time
units (ticks). You may assume the existence of a real hardware clock that
invokes a function tick() in your monitor at regular intervals.

6.37 Discuss ways in which the priority inversion problem could be
addressed in a real-time system. Also discuss whether the solutions
could be implemented within the context of a proportional share
scheduler.




	Synchronization Tools
	Exercises


