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Objectives
To introduce the critical-section problem, whose solutions can be used to ensure the consistency of 
shared data

To present both software and hardware solutions of the critical-section problem

To introduce the concept of an atomic transaction and describe mechanisms to ensure atomicity
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Background

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating 
processes

Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. 
We can do so by having an integer count that keeps track of the number of full buffers.  Initially, count is 
set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the 
consumer after it consumes a buffer.
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Producer 

while (true) {

/*  produce an item and put in nextProduced */
while (counter == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
counter++;

}   
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Consumer

while (true)  {

while (counter == 0)
; // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;

/*  consume the item in nextConsumed
}
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Race Condition

counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as

register2 = counter
register2 = register2 - 1
count = register2

Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1  {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 - 1 {register2 = 4} 
S4: producer execute counter = register1 {count = 6 } 
S5: consumer execute counter = register2 {count = 4}
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Critical Section Problem
Consider system of n processes {p0, p1, … pn-1}
Each process has critical section segment of code

Process may be changing common variables, updating table, writing file, etc
When one process in critical section, no other may be in its critical section

Critical section problem is to design protocol to solve this
Each process must ask permission to enter critical section in entry section, may follow critical section with exit 
section, then remainder section
Especially challenging with preemptive kernels
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Critical Section
General structure of process pi is
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Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be 

executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter 
their critical section, then the selection of the processes that will enter the critical section next cannot be 
postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter 
their critical sections after a process has made a request to enter its critical section and before that 
request is granted

Assume that each process executes at a nonzero speed 
No assumption concerning relative speed of the n processes



6.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Peterson’s Solution
Two process solution

Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted

The two processes share two variables:
int turn; 
Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section

The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies 
that process Pi is ready!
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do { 
flag[i] = TRUE; 
turn = j; 
while (flag[j] && turn == j); 

critical section 
flag[i] = FALSE; 

remainder section 
} while (TRUE); 

Provable that 
1. Mutual exclusion is preserved
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met

Algorithm for Process Pi
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Synchronization Hardware
Many systems provide hardware support for critical section code

Uniprocessors – could disable interrupts
Currently running code would execute without preemption
Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions
Atomic = non-interruptable

Either test memory word and set value
Or swap contents of two memory words
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do { 
acquire lock 

critical section 
release lock 

remainder section 
} while (TRUE); 

Solution to Critical-section 
Problem Using Locks



6.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

TestAndSet Instruction 

Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}
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Solution using TestAndSet

Shared boolean variable lock, initialized to FALSE
Solution:

do {
while ( TestAndSet (&lock ))

;   // do nothing

//    critical section

lock = FALSE;

//      remainder section 

} while (TRUE);
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Swap Instruction

Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}
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Solution using Swap
Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key
Solution:

do {
key = TRUE;
while ( key == TRUE)

Swap (&lock, &key );

//    critical section

lock = FALSE;

//      remainder section 

} while (TRUE);
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Bounded-waiting Mutual Exclusion 
with TestandSet()

do { 
waiting[i] = TRUE; 
key = TRUE; 
while (waiting[i] && key) 

key = TestAndSet(&lock); 
waiting[i] = FALSE; 

// critical section 
j = (i + 1) % n; 
while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 
if (j == i) 

lock = FALSE; 
else 

waiting[j] = FALSE; 
// remainder section 

} while (TRUE);
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Semaphore

Synchronization tool that does not require busy waiting 
Semaphore S – integer variable
Two standard operations modify S: wait() and signal()

Originally called P() and V()

Less complicated
Can only be accessed via two indivisible (atomic) operations

wait (S) { 
while S <= 0

; // no-op
S--;

}
signal (S) { 
S++;

}
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Semaphore as 
General Synchronization Tool

Counting semaphore – integer value can range over an unrestricted domain
Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement

Also known as mutex locks
Can implement a counting semaphore S as a binary semaphore
Provides mutual exclusion

Semaphore mutex;    //  initialized to 1
do {

wait (mutex);
// Critical Section

signal (mutex);
// remainder section

} while (TRUE);
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Semaphore Implementation
Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the 
same time

Thus, implementation becomes the critical section problem where the wait and signal code are placed in 
the crtical section

Could now have busy waiting in critical section implementation
But implementation code is short
Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore this is not a good solution
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Semaphore Implementation 
with no Busy waiting 

With each semaphore there is an associated waiting queue
Each entry in a waiting queue has two data items:

value (of type integer)
pointer to next record in the list

Two operations:
block – place the process invoking the operation on the appropriate waiting queue
wakeup – remove one of processes in the waiting queue and place it in the ready queue
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Semaphore Implementation with 
no Busy waiting (Cont.)

Implementation of wait:
wait(semaphore *S) { 

S->value--; 
if (S->value < 0) { 

add this process to S->list; 
block(); 

} 
}

Implementation of signal:

signal(semaphore *S) { 
S->value++; 
if (S->value <= 0) { 

remove a process P from S->list; 
wakeup(P); 

}
} 
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Deadlock and Starvation
Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of 
the waiting processes

Let S and Q be two semaphores initialized to 1
P0 P1

wait (S); wait (Q);
wait (Q); wait (S);

. .

. .

. .
signal (S); signal (Q);
signal (Q); signal (S);

Starvation – indefinite blocking  
A process may never be removed from the semaphore queue in which it is suspended

Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-
priority process

Solved via priority-inheritance protocol
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Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization schemes

Bounded-Buffer Problem

Readers and Writers Problem

Dining-Philosophers Problem
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Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value N
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Bounded Buffer Problem (Cont.)

The structure of the producer process

do  {

//   produce an item in nextp

wait (empty);
wait (mutex);

//  add the item to the  buffer

signal (mutex);
signal (full);

} while (TRUE);
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Bounded Buffer Problem (Cont.)

The structure of the consumer process

do {
wait (full);
wait (mutex);

//  remove an item from  buffer to nextc

signal (mutex);
signal (empty);

//  consume the item in nextc

} while (TRUE);
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Readers-Writers Problem

A data set is shared among a number of concurrent processes
Readers – only read the data set; they do not perform any updates
Writers   – can both read and write

Problem – allow multiple readers to read at the same time
Only one single writer can access the shared data at the same time

Several variations of how readers and writers are treated – all involve priorities

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0
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Readers-Writers Problem (Cont.)

The structure of a writer process

do {
wait (wrt) ;

//    writing is performed

signal (wrt) ;
} while (TRUE);
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Readers-Writers Problem (Cont.)

The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)  

wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)  

signal (wrt) ;
signal (mutex) ;

} while (TRUE);
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Readers-Writers Problem Variations
First variation – no reader kept waiting unless writer has permission to use shared object

Second variation – once writer is ready, it performs write asap

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing reader-writer locks
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Dining-Philosophers Problem

Philosophers spend their lives thinking and eating
Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat 
from bowl

Need both to eat, then release both when done
In the case of 5 philosophers

Shared data 
Bowl of rice (data set)
Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

do  { 
wait ( chopstick[i] );

wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

What is the problem with this algorithm?
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Problems with Semaphores

Incorrect use of semaphore operations:

signal (mutex)  ….  wait (mutex)

wait (mutex)  … wait (mutex)

Omitting  of wait (mutex) or signal (mutex) (or both)

Deadlock and starvation
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Monitors

A high-level abstraction that provides a convenient and effective mechanism for 
process synchronization
Abstract data type, internal variables only accessible by code within the procedure
Only one process may be active within the monitor at a time
But not powerful enough to model some synchronization schemes

monitor monitor-name
{

// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}
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Schematic view of a Monitor
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Condition Variables

condition x, y;

Two operations on a condition variable:
x.wait () – a process that invokes the operation is suspended until x.signal () 
x.signal () – resumes one of processes (if any) that invoked x.wait ()

If no x.wait () on the variable, then it has no effect on the variable
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Monitor with Condition Variables
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Condition Variables Choices

If process P invokes x.signal (), with Q in x.wait () state, what should happen next?
If Q is resumed, then P must wait

Options include
Signal and wait – P waits until Q leaves monitor or waits for another condition
Signal and continue – Q waits until P leaves the monitor or waits for another condition

Both have pros and cons – language implementer can decide
Monitors implemented in Concurrent Pascal compromise

P executing signal immediately leaves the monitor, Q is resumed
Implemented in other languages including Mesa, C#, Java
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Solution to Dining Philosophers

monitor DiningPhilosophers
{ 

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) { 
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) { 
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 
if ( (state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() { 
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}
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Each philosopher i invokes the operations pickup() and putdown() in the following sequence:

DiningPhilosophers.pickup (i);

EAT

DiningPhilosophers.putdown (i);

No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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Monitor Implementation Using Semaphores

Variables 
semaphore mutex;  // (initially  = 1)
semaphore next;     // (initially  = 0)
int next-count = 0;

Each procedure F will be replaced by

wait(mutex);
…

body of F;

…
if (next_count > 0)

signal(next)
else 

signal(mutex);

Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)
int x-count = 0;

The operation x.wait can be implemented as:

x-count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x-count--;
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Monitor Implementation (Cont.)
The operation x.signal can be implemented as:

if (x-count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}
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Resuming Processes within a Monitor
If several processes queued on condition x, and x.signal() executed, which should be resumed?

FCFS frequently not adequate 

conditional-wait construct of the form x.wait(c)
Where c is priority number
Process with lowest number (highest priority) is scheduled next
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A Monitor to Allocate Single Resource

monitor ResourceAllocator
{ 

boolean busy; 
condition x; 
void acquire(int time) { 

if (busy) 
x.wait(time); 

busy = TRUE; 
} 
void release() { 

busy = FALSE; 
x.signal(); 

} 
initialization code() {

busy = FALSE; 
}

}
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Synchronization Examples
Solaris

Windows XP

Linux

Pthreads
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Solaris Synchronization
Implements a variety of locks to support multitasking, multithreading (including real-time threads), and 
multiprocessing

Uses adaptive mutexes for efficiency when protecting data from short code segments
Starts as a standard semaphore spin-lock
If lock held, and by a thread running on another CPU, spins
If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

Uses condition variables

Uses readers-writers locks when longer sections of code need access to data

Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer lock
Turnstiles are per-lock-holding-thread, not per-object

Priority-inheritance per-turnstile gives the running thread the highest of the priorities of the threads in its 
turnstile
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Windows XP Synchronization
Uses interrupt masks to protect access to global resources on uniprocessor systems

Uses spinlocks on multiprocessor systems
Spinlocking-thread will never be preempted

Also provides dispatcher objects user-land which may act mutexes, semaphores, events, and timers

Events
An event acts much like a condition variable

Timers notify one or more thread when time expired
Dispatcher objects either signaled-state (object available) or non-signaled state (thread will block)
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Linux Synchronization
Linux:

Prior to kernel Version 2.6, disables interrupts to implement short critical sections
Version 2.6 and later, fully preemptive

Linux provides:
semaphores
spinlocks
reader-writer versions of both

On single-cpu system, spinlocks replaced by enabling and disabling kernel preemption
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Pthreads Synchronization

Pthreads API is OS-independent

It provides:
mutex locks
condition variables

Non-portable extensions include:
read-write locks
spinlocks
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The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a resource held by another 
process in the set

Example 
System has 2 disk drives
P1 and P2 each hold one disk drive and each needs another one

Example 

semaphores A and B, initialized to 1 P0 P1

wait (A); wait(B) wait (B); wait(A)
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Bridge Crossing Example

Traffic only in one direction
Each section of a bridge can be viewed as a resource
If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)
Several cars may have to be backed up if a deadlock occurs
Starvation is possible
Note – Most OSes do not prevent or deal with deadlocks
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System Model

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:
request 
use 
release
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Deadlock Characterization

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire additional resources 
held by other processes

No preemption: a resource can be released only voluntarily by the process holding it, after that 
process has completed its task

Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a 
resource that is held by P1, P1 is waiting for a resource that is held by 
P2, …, Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting for a resource that is held 
by P0.

Deadlock can arise if four conditions hold simultaneously
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Resource-Allocation Graph

V is partitioned into two types:
P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

request edge – directed edge Pi → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E
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Resource-Allocation Graph (Cont.)
Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj Pi

Pi

Rj

Rj
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Example of a Resource Allocation Graph
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Resource Allocation Graph With A Deadlock
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Graph With A Cycle But No Deadlock
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Basic Facts

If graph contains no cycles ⇒ no deadlock

If graph contains a cycle ⇒
if only one instance per resource type, then deadlock
if several instances per resource type, possibility of deadlock
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Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state

Allow the system to enter a deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in the system; used by most operating 
systems, including UNIX
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Deadlock Prevention

Mutual Exclusion – not required for sharable resources; must hold for nonsharable resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any 
other resources

Require process to request and be allocated all its resources before it begins execution, or 
allow process to request resources only when the process has none
Low resource utilization; starvation possible

Restrain the ways request can be made
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Deadlock Prevention (Cont.)
No Preemption –

If a process that is holding some resources requests another resource that cannot be immediately 
allocated to it, then all resources currently being held are released
Preempted resources are added to the list of resources for which the process is waiting
Process will be restarted only when it can regain its old resources, as well as the new ones that it is 
requesting

Circular Wait – impose a total ordering of all resource types, and require that each process requests 
resources in an increasing order of enumeration
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Deadlock Avoidance

Simplest and most useful model requires that each process declare the maximum number of 
resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that 
there can never be a circular-wait condition

Resource-allocation state is defined by the number of available and allocated resources, and the 
maximum demands of the processes

Requires that the system has some additional a priori information available
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End of Chapter 6
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