
13C H A P T E R

I/O Systems

Practice Exercises

13.1 State three advantages of placing functionality in a device controller,
rather than in the kernel. State three disadvantages.
Answer: Three advantages: Bugs are less likely to cause an operating
system crash
Performance can be improved by utilizing dedicated hardware and
hard-coded algorithms
The kernel is simplified by moving algorithms out of it
Three disadvantages: Bugs are harder to fix—a new firmware version
or new hardware is needed
Improving algorithms likewise require a hardware update rather than
just a kernel or device-driver update
Embedded algorithms could conflict with application’s use of the de-
vice, causing decreased performance.

13.2 The example of handshaking in Section 13.2 used 2 bits: a busy bit and a
command-ready bit. Is it possible to implement this handshaking with
only 1 bit? If it is, describe the protocol. If it is not, explain why 1 bit is
insufficient.
Answer: It is possible, using the following algorithm. Let’s assume

we simply use the busy-bit (or the command-ready bit; this answer
is the same regardless). When the bit is off, the controller is idle. The
host writes to data-out and sets the bit to signal that an operation is
ready (the equivalent of setting the command-ready bit). When the
controller is finished, it clears the busy bit. The host then initiates the
next operation.
This solution requires that both the host and the controller have read
and write access to the same bit, which can complicate circuitry and
increase the cost of the controller.

13.3 Why might a system use interrupt-driven I/O to manage a single serial
port and polling I/O to manage a front-end processor, such as a terminal
concentrator?

51



52 Chapter 13 I/O Systems

Answer: Polling can be more efficient than interrupt-driven I/O.
This is the case when the I/O is frequent and of short duration. Even
though a single serial port will perform I/O relatively infrequently and
should thus use interrupts, a collection of serial ports such as those
in a terminal concentrator can produce a lot of short I/O operations,
and interrupting for each one could create a heavy load on the system.
A well-timed polling loop could alleviate that load without wasting
many resources through looping with no I/O needed.

13.4 Polling for an I/O completion can waste a large number of CPU cycles
if the processor iterates a busy-waiting loop many times before the I/O
completes. But if the I/O device is ready for service, polling can be much
more efficient than is catching and dispatching an interrupt. Describe
a hybrid strategy that combines polling, sleeping, and interrupts for
I/O device service. For each of these three strategies (pure polling, pure
interrupts, hybrid), describe a computing environment in which that
strategy is more efficient than is either of the others.
Answer: A hybrid approach could switch between polling and

interrupts depending on the length of the I/O operation wait. For
example, we could poll and loop N times, and if the device is still busy
at N+1, we could set an interrupt and sleep. This approach would avoid
long busy-waiting cycles. This method would be best for very long or
very short busy times. It would be inefficient it the I/O completes at
N+T (where T is a small number of cycles) due to the overhead of
polling plus setting up and catching interrupts.
Pure polling is best with very short wait times. Interrupts are best with
known long wait times.

13.5 How does DMA increase system concurrency? How does it complicate
hardware design?
Answer: DMA increases system concurrency by allowing the CPU

to perform tasks while the DMA system transfers data via the system
and memory buses. Hardware design is complicated because the DMA
controller must be integrated into the system, and the system must
allow the DMA controller to be a bus master. Cycle stealing may also
be necessary to allow the CPU and DMA controller to share use of the
memory bus.

13.6 Why is it important to scale up system-bus and device speeds as CPU
speed increases?
Answer: Consider a system which performs 50% I/O and 50% com-

putes. Doubling the CPU performance on this system would increase
total system performance by only 50%. Doubling both system aspects
would increase performance by 100%. Generally, it is important to re-
move the current system bottleneck, and to increase overall system
performance, rather than blindly increasing the performance of indi-
vidual system components.

13.7 Distinguish between a STREAMS driver and a STREAMS module.
Answer: The STREAMS driver controls a physical device that could be
involved in a STREAMS operation. The STREAMS module modifies the
flow of data between the head (the user interface) and the driver.


