
5C H A P T E R

CPU Scheduling

Practice Exercises

5.1 A CPU-scheduling algorithm determines an order for the execution of its
scheduled processes. Given n processes to be scheduled on one proces-
sor, how many different schedules are possible? Give a formula in terms
of n.
Answer: n! (n factorial = n × n – 1 × n – 2 × ... × 2 × 1).

5.2 Explain the difference between preemptive and nonpreemptive schedul-
ing.
Answer: Preemptive scheduling allows a process to be interrupted

in the midst of its execution, taking the CPU away and allocating it
to another process. Nonpreemptive scheduling ensures that a process
relinquishes control of the CPU only when it finishes with its current
CPU burst.

5.3 Suppose that the following processes arrive for execution at the times
indicated. Each process will run for the amount of time listed. In answer-
ing the questions, use nonpreemptive scheduling, and base all decisions
on the information you have at the time the decision must be made.

Process Arrival Time Burst Time
P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the
FCFS scheduling algorithm?

b. What is the average turnaround time for these processes with the
SJF scheduling algorithm?

c. The SJF algorithm is supposed to improve performance, but notice
that we chose to run process P1 at time 0 because we did not know
that two shorter processes would arrive soon. Compute what the
average turnaround time will be if the CPU is left idle for the first

13



14 Chapter 5 CPU Scheduling

1 unit and then SJF scheduling is used. Remember that processes
P1 and P2 are waiting during this idle time, so their waiting time
may increase. This algorithm could be known as future-knowledge
scheduling.

Answer:

a. 10.53

b. 9.53

c. 6.86

Remember that turnaround time is finishing time minus arrival time, so
you have to subtract the arrival times to compute the turnaround times.
FCFS is 11 if you forget to subtract arrival time.

5.4 What advantage is there in having different time-quantum sizes at dif-
ferent levels of a multilevel queueing system?
Answer: Processes that need more frequent servicing, for instance,

interactive processes such as editors, can be in a queue with a small time
quantum. Processes with no need for frequent servicing can be in a queue
with a larger quantum, requiring fewer context switches to complete the
processing, and thus making more efficient use of the computer.

5.5 Many CPU-scheduling algorithms are parameterized. For example, the
RR algorithm requires a parameter to indicate the time slice. Multilevel
feedback queues require parameters to define the number of queues,
the scheduling algorithms for each queue, the criteria used to move
processes between queues, and so on.

These algorithms are thus really sets of algorithms (for example, the
set of RR algorithms for all time slices, and so on). One set of algorithms
may include another (for example, the FCFS algorithm is the RR algorithm
with an infinite time quantum). What (if any) relation holds between the
following pairs of algorithm sets?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

Answer:

a. The shortest job has the highest priority.

b. The lowest level of MLFQ is FCFS.

c. FCFS gives the highest priority to the job having been in existence
the longest.

d. None.

5.6 Suppose that a scheduling algorithm (at the level of short-term CPU
scheduling) favors those processes that have used the least processor



Practice Exercises 15

time in the recent past. Why will this algorithm favor I/O-bound pro-
grams and yet not permanently starve CPU-bound programs?
Answer: It will favor the I/O-bound programs because of the relatively
short CPU burst request by them; however, the CPU-bound programs
will not starve because the I/O-bound programs will relinquish the CPU
relatively often to do their I/O.

5.7 Distinguish between PCS and SCS scheduling.
Answer: PCS scheduling is done local to the process. It is how the

thread library schedules threads onto available LWPs. SCS scheduling is
the situation where the operating system schedules kernel threads. On
systems using either many-to-one or many-to-many, the two scheduling
models are fundamentally different. On systems using one-to-one, PCS
and SCS are the same.

5.8 Assume that an operating system maps user-level threads to the kernel
using the many-to-many model and that the mapping is done through
the use of LWPs. Furthermore, the system allows program developers to
create real-time threads. Is it necessary to bind a real-time thread to an
LWP?
Answer: Yes, otherwise a user thread may have to compete for an

available LWP prior to being actually scheduled. By binding the user
thread to an LWP, there is no latency while waiting for an available LWP;
the real-time user thread can be scheduled immediately.




