Chapter 2. Operating-System
Structures

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

=
S

“$7/Chapter 2: Operating-System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Virtual Machines

Operating System Debugging

Operating System Generation

System Boot

.

=P =N
U .-.1‘-,".’

Operating System Concepts — 8t" Edition 2.2 Silberschatz, Galvin and Gagne ©2009

B To describe the services an operating system provides to users,
processes, and other systems

B To discuss the various ways of structuring an operating system

® To explain how operating systems are installed and customized and
how they boot

Operating System Concepts — 8t" Edition 2.3 Silberschatz, Galvin and Gagne ©2009

=

S5 Operating System Services

m Operating systems provide an environment for execution of programs and
services to programs and users

® One set of operating-system services provides functions that are helpful to the
user:

e User interface - Almost all operating systems have a user interface (Ul).

» Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

e Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

e |/O operations - A running program may require I/O, which may involve a
file or an 1/O device

e File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

7 k‘,:.-:
“ A9y °

Operating System Concepts — 8t Edition 2.4 Silberschatz, Galvin and Gagne ©2009

) . :
“#77 Operating System Services (Cont.)

e Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through
message passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in I/O devices, in
user program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’'s and
programmer’s abilities to efficiently use the system

S

Operating System Concepts — 8t Edition 25 Silberschatz, Galvin and Gagne ©2009

=

A\
Y Jp—
&

.,,w-/ Operating System Services (Cont)

® Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

e Accounting - To keep track of which users use how much and what kinds
of computer resources

e Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

» If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

A

 Saa

AP

Operating System Concepts — 8t Edition 2.6 Silberschatz, Galvin and Gagne ©2009

=

-

5

“377 A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /O file I resource .
execution operations systems camminicatian allocation AceRuning
error pro;%cglon
detection _ security
services

operating system

hardware

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.7

2

&n,,,- User Operating System Interface - CLI

®m Command Line Interface (CLI) or command interpreter allows direct
command entry

» Sometimes implemented in kernel, sometimes by systems
program

» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it

Sometimes commands built-in, sometimes just names of
programs

» |If the latter, adding new features doesn’t require shell
modification

Operating System Concepts — 8t Edition 2.8 Silberschatz, Galvin and Gagne ©2009

“$7/ User Operating System Interface - GUI

m User-friendly desktop metaphor interface
e Usually mouse, keyboard, and monitor
e Icons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

e |Invented at Xerox PARC

® Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available

e Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

7 k‘,:.-:
“ A9y °

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.9

a3

-

p
"“‘#’Bourne Shell Command Interpreter

B Terminal = (=) &3
File Edit Wiew Terminal Tabs Help

£d0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0O a
sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 0

sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0

extended device statistics

device r/s /s kr/s kw/s wait actv svc_t %w %b

fd0o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

1sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 0

sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

(root@pbg-rved-—vmn) - (11 /pts)-(00:53 15-Jun-2007)-(global)
-{/var/imp/systen-contents/scripts)# swap -sh
total: 1.1C allocated + 190M reserved = 1.30 used, 1.60 available
(root@pbg-mved-vmn)-(12/pts)-(00:53 15-Jun-2007)-(global)
~(/var/tnp/systen-contents/scripts)# uptime

12:53am wp 9 min{s), 3 users, Jload average: 33.29, 67.68, 36.81
(root@pbg-nv64-vmn)-(13/pts)-(00:53 15-Jun-2007)-(global}
-(/var/tmp/systen-contents/scripts)# w

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66

User Tty login@ ddle JCPU PCPU what

root console 15Jun0718days 1 Jfusr/bin/ssh-agent -- fusr/bi
n/d

root pts/3 15Jun07 18 4 w o
root pts/4 15Jun0718days w

(root@pbg-nv64-vm) - (14/pts)-(16:07 02-Jul-2007)-(global} .
—{/var/top/systen-contents/scripts)# ry

Operating System Concepts — 8t Edition 2.10 Silberschatz, Galvin and Gagne ©2009

The Mac OS X GUI

r

@ Grab File Edit [[E1HCE

B
AFEC- e Dk >
ir
& K D e Modified Size Aplication |
o Fof L2400, 10570 eler 2=
ﬁ':“m ; o oG EC1ROT, 5 AIM TTRR Itkicaon
B Frandion Suio O Foctab e Necasrt Crashist Imene Ty, 160M KR Predsw
3 tiadnizsn O o Tony, 1EaEH 136 Iakicaon
= Uncaled D T ecunnn Ty, TIEEP ML e
Ut 2
o TPEG &
o TRRCE &
& o -
* Poer Bas Cabvin's iFad =
O=ED
Freves | e
- -
E
Size: SEC,. KE (IL23E bybest
a2 36 ytes
Fvrsical. £31 KE 222,141
sl
2471
Th Wik = e Tal : by (005
* hg-idn ¥ tg-20a Crawg:. sdwi 1 (50}
2 bg-t Parmission: -p - (G000
- Falhy Mol m EPG- Ll
' | aedir sbioik-cet 41!
-3 an
| Preferences | sook Avwbications oty
¥ Ubrary L vohsme:
10 en = G Capacity: 715408
Free: 71831 CH
|) projects Format: i
Bt i et s MR RG G
LA 1of € ers selecwed « 7343 Glawilazie 5.1 63 uses

L Address Book
Dicticnary and Thessurus

O, aeranng wystem

apsersat-ing sys-tem
o
e softwar

| Dec ke 0a 80 |(Deg Rad| o [[Ren i Tap

) Gl Gl

appors a compter s ede i 1
5 tsks, eec g apylic thons e

1l i i LBNAPPLE.

Wi BOO-Z75-23T3

hame page it BpRie.co—

e 1 infivilte Loop
Copest no 5A 82074
Uhed States

3 foun

Operating System Concepts — 8t Edition 2.11 Silberschatz, Galvin and Gagne ©2009

P System Calls

B Programming interface to the services provided by the OS
m Typically written in a high-level language (C or C++)

B Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

B Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

®m Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

7 k‘,:.-:
“ A9y °

Operating System Concepts — 8t Edition 2.12 Silberschatz, Galvin and Gagne ©2009

& Example of System Calls

B System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Y,

A

o .\"\l.. A
(h
A ﬁ»"

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.13

EL N

-
-
e'}'.q v "‘l

o Example of Standard AP!

m Consider the ReadFile() function in the
® Win32 APl—a function for reading from a file

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,
LPOVERLAPPED ovl) ;

function name —

m A description of the parameters passed to ReadFile()
HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from
DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read
LPOVERLAPPED ovl—indicates if overlapped I/O is being used

.

- =X~

= g
= ’-}‘f‘ s
el

W
AU .-.{',‘: 3

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.14

“$77 System Call Implementation

m Typically, a number associated with each system call

e System-call interface maintains a table indexed according to these
numbers

B The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

® The caller need know nothing about how the system call is
implemented

e Just needs to obey API and understand what OS will do as a
result call

e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

F _.- - ‘.: \ ..,- ‘
|
o '%-(/

A R

Operating System Concepts — 8t Edition 2.15 Silberschatz, Galvin and Gagne ©2009

-

“$7" API — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
I open ()
Implementation
i » of open ()
2 system call
return

Operating System Concepts — 8! Edition 2.16

Silberschatz, Galvin and Gagne ©2009

“#7/ _ standard C Library Example

m C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;
}
user
node =
standard C library
;ernel

node
erite ()

Operating System Concepts — 8t Edition 2.17 Silberschatz, Galvin and Gagne ©2009

write ()
system call

=
)
== m-‘nl

“%7/ System Call Parameter Passing

m Often, more information is required than simply identity of desired
system call

e Exact type and amount of information vary according to OS and
call

m Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

LA

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.18

“3$7/ Parameter Passing via Table

— X

register

X: parameters
for call

— ™ use parameters code for
load address X from table X system
system call 13 > call 13

user program

operating system

Operating System Concepts — 8th Edition 2.19 Silberschatz, Galvin and Gagne ©2009

(B

r.af Types of System Calls

® Process control
e end, abort
e |oad, execute
e create process, terminate process
e (et process attributes, set process attributes
e wait for time
e wait event, signal event
e allocate and free memory
® File management
e create file, delete file
e open, close file
e read, write, reposition
e get and set file attributes

Operating System Concepts — 8t Edition 2.20 Silberschatz, Galvin and Gagne ©2009

o "'?""'-j

“$7/ Types of System Calls (Cont.)

® Device management
e request device, release device
e read, write, reposition
e get device attributes, set device attributes
e logically attach or detach devices
® Information maintenance
e (et time or date, set time or date
e get system data, set system data
e get and set process, file, or device attributes
®m Communications
e create, delete communication connection
e send, receive messages
e transfer status information
e attach and detach remote devices

Operating System Concepts — 8! Edition 2.21

R—

Y
L2 =N
= ﬂ‘;\ Wy
W
s L’

U "\' o

Silberschatz, Galvin and Gagne ©2009

-3

ey |

gi3%§>‘!'/i

Examples of Windows and

Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts — 8! Edition

Windows

CreateProcess ()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

2.22

Unix

fork()
exit ()
wait ()

open()
read()
write()
close()

ioctl()
read ()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

Silberschatz, Galvin and Gagne ©2009

o Example: MS-DOS

®m Single-tasking
Shell invoked when system booted
Simple method to run program
e No process created
® Single memory space
Loads program into memory, overwriting all but the kernel
Program exit -> shell reloaded

T —

N\ '\\. -.-_.
2 - \: A
- ;h__ar\ |
WS
£ A9% 1

Operating System Concepts — 8t Edition 2.23 Silberschatz, Galvin and Gagne ©2009

o MS-DOS execution

free memory

free memory

process
command
interpreter command
Interpreter
kernel kernel
(a) (b)

(a) At system startup (b) running a program

Operating System Concepts — 8t Edition 2.24 Silberschatz, Galvin and Gagne ©2009

v" Example: FreeBSD

Unix variant
Multitasking
User login -> invoke user’s choice of shell

Shell executes fork() system call to create process

e Executes exec() to load program into process

e Shell waits for process to terminate or continues with user commands
® Process exits with code of O — no error or > 0 — error code

Operating System Concepts — 8t Edition 2.25 Silberschatz, Galvin and Gagne ©2009

LY

...:_ﬂ':"‘ﬁj) 2 I
“#”’ FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

Operating System Concepts — 8 Edition 226 Silberschatz, Galvin and Gagne ©2009

o "'?""'-j

System Programs

m System programs provide a convenient environment for program
development and execution. They can be divided into:

File manipulation

Status information

File modification

Programming language support
Program loading and execution
Communications

Application programs

B Most users’ view of the operation system is defined by system
programs, not the actual system calls

Operating System Concepts — 8! Edition 2.27

R—

Y
L2 =N
= ﬂ‘;\ Wy
W
s L’

U "\' o

Silberschatz, Galvin and Gagne ©2009

=L N
~
= F".""P-.J

> o System Programs

B Provide a convenient environment for program development and
execution

e Some of them are simply user interfaces to system calls; others
are considerably more complex

® File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

B Status information

e Some ask the system for info - date, time, amount of available
memory, disk space, number of users

e Others provide detailed performance, logging, and debugging
information

e Typically, these programs format and print the output to the
terminal or other output devices

e Some systems implement a registry - used to store and retrieve
configuration information

\

_ SAs

AP

Operating System Concepts — 8t Edition 2.28 Silberschatz, Galvin and Gagne ©2009

=
2
i P-J

5 System Programs (Cont.)

m File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

®m Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

e Allow users to send messages to one another’s screens, browse
web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

\

_ SAs

AP

Operating System Concepts — 8t Edition 2.29 Silberschatz, Galvin and Gagne ©2009

" Operating System Design
r @l and Implementation

® Design and Implementation of OS not “solvable”, but some
approaches have proven successful

®m Internal structure of different Operating Systems can vary widely
m Start by defining goals and specifications
m Affected by choice of hardware, type of system

m User goals and System goals

e User goals — operating system should be convenient to use, easy
to learn, reliable, safe, and fast

e System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

7 k‘,:.-:
“ A9y °

Operating System Concepts — 8t Edition 2.30 Silberschatz, Galvin and Gagne ©2009

P Operating System Design and
T Implementation (Cont.)

B Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

® Mechanisms determine how to do something, policies decide what will
be done

e The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to be
changed later

.

M= \}
=P — M
U A9% i

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.31

wv—f Simple Structure

B MS-DOS - written to provide the most functionality in the least space
e Not divided into modules

e Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

Operating System Concepts — 8" Edition 2.32 Silberschatz, Galvin and Gagne ©2009

wr & MS-DOS Layer Structure

L

MS-DOS device drivers

ROM BIOS device drivers ’

A

Operating System Concepts — 8t Edition 2.33 Silberschatz, Galvin and Gagne ©2009

LN

-
-
(':'q!. "‘-_l

- Layered Approach

B The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

m With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

Operating System Concepts — 8t Edition 2.34 Silberschatz, Galvin and Gagne ©2009

“#7/ Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling
g 4 handling swapping block /O page replacement
N character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

T —

— .\'\\. -.-_.
A e |
= 5;._5\)
WS
U a9

Operating System Concepts — 8t Edition 2.35 Silberschatz, Galvin and Gagne ©2009

a,_“../ UNIX

m UNIX — limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts

e Systems programs
e The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

7 k‘,:.-:
“ A9y °

Operating System Concepts — 8t Edition 2.36 Silberschatz, Galvin and Gagne ©2009

layer O
hardware

Operating System Concepts — 8t Edition 2.37 Silberschatz, Galvin and Gagne ©2009

=
S

‘*v Microkernel System Structure

B Moves as much from the kernel into “user” space

®m Communication takes place between user modules using message
passing
B Benefits:
e Easier to extend a microkernel
e Easier to port the operating system to new architectures

e More reliable (less code is running in kernel mode)
e More secure

®m Detriments:

e Performance overhead of user space to kernel space
communication

- =X~
= g
= ’-}‘f‘ s
el
W
AU .-.{',‘: 3

Operating System Concepts — 8t Edition 2.38 Silberschatz, Galvin and Gagne ©2009

r &f Mac OS X Structure

kernel
environment

Operating System Concepts — 8! Edition

application environments
and common services

BSD

Mach

2.39

Silberschatz, Galvin and Gagne ©2009

B Most modern operating systems implement kernel modules
e Uses object-oriented approach
e Each core component is separate
e Each talks to the others over known interfaces
e Eachis loadable as needed within the kernel

m Overall, similar to layers but with more flexible

Operating System Concepts — 8t Edition 2.40 Silberschatz, Galvin and Gagne ©2009

r &f Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

executable
formats

STREAMS
modules

Operating System Concepts — 8t Edition 2.41 Silberschatz, Galvin and Gagne ©2009

o

o "'?""'-j
i 4

> &l Virtual Machines

m Avirtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel as
though they were all hardware.

m A virtual machine provides an interface identical to the underlying bare
hardware.

® The operating system host creates the illusion that a process has its
own processor and (virtual memory).

m Each guest provided with a (virtual) copy of underlying computer.

e

X
L2 5
4"'»:“ :
¥

4 %
U "\f"’

Operating System Concepts — 8t Edition 2.42 Silberschatz, Galvin and Gagne ©2009

=
-

p—

“37 Virtual Machines History and Benefits

m First appeared commercially in IBM mainframes in 1972

Fundamentally, multiple execution environments (different operating
systems) can share the same hardware

Protect from each other

Some sharing of file can be permitted, controlled

Commutate with each other, other physical systems via networking
Useful for development, testing

Consolidation of many low-resource use systems onto fewer busier
systems

m “Open Virtual Machine Format”, standard format of virtual machines,
allows a VM to run within many different virtual machine (host)
platforms

F _.- - v: \ k| .,‘ ‘
5
o '%-(/
A9

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.43

Virtual Machines (Cont.)

Operating System Concepts — 8! Edition

processes

+

kernel

hardware

(a)

rd

programming/

interface

processes
processes
processes
kernel kernel kernel
VA V2 VM3

virtual-machine
implementation

hardware

(b)

(a) Nonvirtual machine (b) virtual machine

Silberschatz, Galvin and Gagne ©2009

o Para-virtualization

® Presents guest with system similar but not identical to hardware

m Guest must be modified to run on paravirtualized hardware

m Guest can be an OS, or in the case of Solaris 10 applications running in
containers

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8! Edition 2.45

=
S
> ml

“$7/ Virtualization Implementation

m Difficult to implement — must provide an exact duplicate of underlying
machine

e Typically runs in user mode, creates virtual user mode and virtual kernel
mode

B Timing can be an issue — slower than real machine
m Hardware support needed

e More support-> better virtualization

e i.e. AMD provides “host” and “guest” modes

.

=P =N
U .-.1‘-,".’

Operating System Concepts — 8t Edition 2.46 Silberschatz, Galvin and Gagne ©2009

=N

y ——
“377 Solaris 10 with Two Containers

user programs user programs user programs
system programs system programs system programs
CPU resources network addresses | network addresses
memory resources device access device access
CPU resources CPU resources
Memaory resources | memory resources

Zonhe 1 Zone 2

virtual platform
global zone device management

Zone management

Solaris kernel

network addresses

Operating System Concepts — 8t Edition 2.47 Silberschatz, Galvin and Gagne ©2009

r.di VMware Architecture

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU

virtual memory virtual memory virtual memory

virtual devices virtual devices virtual devices

virtualization layer

. 1

host operating system
(Linux)

hardware
CPU memory I/O devices

Operating System Concepts — 8t Edition 2.48 Silberschatz, Galvin and Gagne ©2009

Java API

Java program \
.class files

. --4-9| class loader |&-+--
.class files

'

Java
interpreter

\4

host system
(Windows, Linux, etc.)

Operating System Concepts — 8t Edition 2.49 Silberschatz, Galvin and Gagne ©2009

557 Operating-System Debugging

B Debugging is finding and fixing errors, or bugs
OSes generate |og files containing error information

Failure of an application can generate core dump file capturing
memory of the process

m Operating system failure can generate crash dump file containing
kernel memory

B Beyond crashes, performance tuning can optimize system performance

m Kernighan’s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

B DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems

e Probes fire when code is executed, capturing state data and
sending it to consumers of those probes

F _.- - v: \ k| .,‘ ‘
5
o '%-(/
A9

Operating System Concepts — 8t Edition 2.50 Silberschatz, Galvin and Gagne ©2009

N

“$7/ Solaris 10 dtrace Following System Call

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTICN
-> XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<- XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> ioctl
-> loctl
-> getf
-> set _active_ fd
<- set_active fd
<— getf
-> get udatamodel
<— get udatamodel

o

o O O O O O o o O O o O O
RRRARRRNAAACC A

-> releasef
-> clear active £fd
<- clear active fd
-> cv_broadcast
<— cv_broadcast
<— releasef
«<— loctl
«— ioctl
<— _XEventsQueued
<— XEventsQueued

DDODODODDD:
cogdRARRR R

Operating System Concepts — 8t Edition 2.51 Silberschatz, Galvin and Gagne ©2009

r & Operating System Generation

m Operating systems are designed to run on any of a class of machines;
the system must be configured for each specific computer site

B SYSGEN program obtains information concerning the specific
configuration of the hardware system

B Booting — starting a computer by loading the kernel

B Bootstrap program — code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

R—

Y
L2 =N
= ﬂ‘;\ Wy
W
s L’

U "\' o

Operating System Concepts — 8t Edition 2.52 Silberschatz, Galvin and Gagne ©2009

o "'?""'-j
2 /

1_,—/ SySte m Boot

~%

m Operating system must be made available to hardware so hardware
can start it

e Small piece of code — bootstrap loader, locates the kernel,
loads it into memory, and starts it

e Sometimes two-step process where boot block at fixed location
loads bootstrap loader

e When power initialized on system, execution starts at a fixed
memory location

» Firmware used to hold initial boot code

R—

Y
L2 =N
= ﬂ‘;\ Wy
W
s L’

U "\' o

Operating System Concepts — 8t Edition 2.53 Silberschatz, Galvin and Gagne ©2009

End of Chapter 2

Operating System Concepts — 8t Edition Silberschatz, Galvin and Gagne ©2009

	Chapter 2: Operating-System Structures
	Chapter 2: Operating-System Structures
	Objectives
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.)
	A View of Operating System Services
	User Operating System Interface - CLI
	User Operating System Interface - GUI
	Bourne Shell Command Interpreter
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	Standard C Library Example
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls (Cont.)
	Examples of Windows and �Unix System Calls
	Example: MS-DOS
	MS-DOS execution
	Example: FreeBSD
	FreeBSD Running Multiple Programs
	System Programs
	System Programs
	System Programs (Cont.)
	Operating System Design �and Implementation
	Operating System Design and �Implementation (Cont.)
	Simple Structure
	MS-DOS Layer Structure
	Layered Approach
	Traditional UNIX System Structure
	UNIX
	Layered Operating System
	Microkernel System Structure
	Mac OS X Structure
	Modules
	Solaris Modular Approach
	Virtual Machines
	Virtual Machines History and Benefits
	Virtual Machines (Cont.)
	Para-virtualization
	Virtualization Implementation
	Solaris 10 with Two Containers
	VMware Architecture
	The Java Virtual Machine
	Operating-System Debugging
	Solaris 10 dtrace Following System Call
	Operating System Generation
	System Boot
	End of Chapter 2

