
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Chapter 2: Operating-System Structures

 Operating System Services
 User Operating System Interface
 System Calls
 Types of System Calls
 System Programs
 Operating System Design and Implementation
 Operating System Structure
 Virtual Machines
 Operating System Debugging
 Operating System Generation
 System Boot

2.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Objectives

 To describe the services an operating system provides to users,
processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized and
how they boot

2.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Services

 Operating systems provide an environment for execution of programs and
services to programs and users

 One set of operating-system services provides functions that are helpful to the
user:
 User interface - Almost all operating systems have a user interface (UI).

 Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

 Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve a
file or an I/O device

 File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

2.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Communications – Processes may exchange information, on the
same computer or between computers over a network
 Communications may be via shared memory or through

message passing (packets moved by the OS)
 Error detection – OS needs to be constantly aware of possible

errors
May occur in the CPU and memory hardware, in I/O devices, in

user program
 For each type of error, OS should take the appropriate action to

ensure correct and consistent computing
 Debugging facilities can greatly enhance the user’s and

programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing
 Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
 Many types of resources - Some (such as CPU cycles, main memory,

and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

 Accounting - To keep track of which users use how much and what kinds
of computer resources

 Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts
 If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.

2.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows direct
command entry

 Sometimes implemented in kernel, sometimes by systems
program

 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it

– Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

2.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc
 Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory
(known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces
 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath

and shells available
 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Bourne Shell Command Interpreter

2.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

The Mac OS X GUI

2.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

 Why use APIs rather than system calls?

 (Note that the system-call names used throughout this text are
generic)

2.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

2.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of Standard API

 Consider the ReadFile() function in the
 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()
 HANDLE file—the file to be read
 LPVOID buffer—a buffer where the data will be read into and written from
 DWORD bytesToRead—the number of bytes to be read into the buffer
 LPDWORD bytesRead—the number of bytes read during the last read
 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

2.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to these

numbers

 The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented
 Just needs to obey API and understand what OS will do as a

result call
 Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into
libraries included with compiler)

2.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

API – System Call – OS Relationship

2.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Standard C Library Example
 C program invoking printf() library call, which calls write() system call

2.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Call Parameter Passing

 Often, more information is required than simply identity of desired
system call
 Exact type and amount of information vary according to OS and

call

 Three general methods used to pass parameters to the OS
 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers
 Parameters stored in a block, or table, in memory, and address of

block passed as a parameter in a register
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

2.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Parameter Passing via Table

2.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Types of System Calls

 Process control
 end, abort
 load, execute
 create process, terminate process
 get process attributes, set process attributes
 wait for time
 wait event, signal event
 allocate and free memory

 File management
 create file, delete file
 open, close file
 read, write, reposition
 get and set file attributes

2.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Types of System Calls (Cont.)

 Device management
 request device, release device
 read, write, reposition
 get device attributes, set device attributes
 logically attach or detach devices

 Information maintenance
 get time or date, set time or date
 get system data, set system data
 get and set process, file, or device attributes

 Communications
 create, delete communication connection
 send, receive messages
 transfer status information
 attach and detach remote devices

2.22 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Examples of Windows and
Unix System Calls

2.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example: MS-DOS

 Single-tasking
 Shell invoked when system booted
 Simple method to run program

 No process created
 Single memory space
 Loads program into memory, overwriting all but the kernel
 Program exit -> shell reloaded

2.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

MS-DOS execution

(a) At system startup (b) running a program

2.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example: FreeBSD

 Unix variant
 Multitasking
 User login -> invoke user’s choice of shell
 Shell executes fork() system call to create process

 Executes exec() to load program into process
 Shell waits for process to terminate or continues with user commands

 Process exits with code of 0 – no error or > 0 – error code

2.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

FreeBSD Running Multiple Programs

2.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Programs

 System programs provide a convenient environment for program
development and execution. They can be divided into:
 File manipulation
 Status information
 File modification
 Programming language support
 Program loading and execution
 Communications
 Application programs

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

2.28 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Programs

 Provide a convenient environment for program development and
execution
 Some of them are simply user interfaces to system calls; others

are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

 Status information
 Some ask the system for info - date, time, amount of available

memory, disk space, number of users
 Others provide detailed performance, logging, and debugging

information
 Typically, these programs format and print the output to the

terminal or other output devices
 Some systems implement a registry - used to store and retrieve

configuration information

2.29 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Programs (Cont.)

 File modification
 Text editors to create and modify files
 Special commands to search contents of files or perform

transformations of the text

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems for
higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

2.30 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Design
and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals
 User goals – operating system should be convenient to use, easy

to learn, reliable, safe, and fast
 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.31 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Design and
Implementation (Cont.)

 Important principle to separate
 Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will

be done
 The separation of policy from mechanism is a very important

principle, it allows maximum flexibility if policy decisions are to be
changed later

2.32 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Simple Structure

 MS-DOS – written to provide the most functionality in the least space
 Not divided into modules
 Although MS-DOS has some structure, its interfaces and levels of

functionality are not well separated

2.33 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

MS-DOS Layer Structure

2.34 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Layered Approach

 The operating system is divided into a number of layers (levels), each
built on top of lower layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions
(operations) and services of only lower-level layers

2.35 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Traditional UNIX System Structure

2.36 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring. The UNIX OS consists of two
separable parts
 Systems programs
 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

2.37 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Layered Operating System

2.38 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Microkernel System Structure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message
passing

 Benefits:
 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space

communication

2.39 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Mac OS X Structure

2.40 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Modules

 Most modern operating systems implement kernel modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

2.41 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris Modular Approach

2.42 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Virtual Machines

 A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel as
though they were all hardware.

 A virtual machine provides an interface identical to the underlying bare
hardware.

 The operating system host creates the illusion that a process has its
own processor and (virtual memory).

 Each guest provided with a (virtual) copy of underlying computer.

2.43 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Virtual Machines History and Benefits

 First appeared commercially in IBM mainframes in 1972
 Fundamentally, multiple execution environments (different operating

systems) can share the same hardware
 Protect from each other
 Some sharing of file can be permitted, controlled
 Commutate with each other, other physical systems via networking
 Useful for development, testing
 Consolidation of many low-resource use systems onto fewer busier

systems
 “Open Virtual Machine Format”, standard format of virtual machines,

allows a VM to run within many different virtual machine (host)
platforms

2.44 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Virtual Machines (Cont.)

 (a) Nonvirtual machine (b) virtual machine

2.45 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Para-virtualization

 Presents guest with system similar but not identical to hardware

 Guest must be modified to run on paravirtualized hardware

 Guest can be an OS, or in the case of Solaris 10 applications running in
containers

2.46 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Virtualization Implementation

 Difficult to implement – must provide an exact duplicate of underlying
machine
 Typically runs in user mode, creates virtual user mode and virtual kernel

mode
 Timing can be an issue – slower than real machine
 Hardware support needed

 More support-> better virtualization
 i.e. AMD provides “host” and “guest” modes

2.47 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris 10 with Two Containers

2.48 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

VMware Architecture

2.49 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

The Java Virtual Machine

2.50 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs
 OSes generate log files containing error information
 Failure of an application can generate core dump file capturing

memory of the process
 Operating system failure can generate crash dump file containing

kernel memory
 Beyond crashes, performance tuning can optimize system performance
 Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

 DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems
 Probes fire when code is executed, capturing state data and

sending it to consumers of those probes

2.51 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris 10 dtrace Following System Call

2.52 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Generation

 Operating systems are designed to run on any of a class of machines;
the system must be configured for each specific computer site

 SYSGEN program obtains information concerning the specific
configuration of the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

2.53 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

System Boot

 Operating system must be made available to hardware so hardware
can start it
 Small piece of code – bootstrap loader, locates the kernel,

loads it into memory, and starts it
 Sometimes two-step process where boot block at fixed location

loads bootstrap loader
 When power initialized on system, execution starts at a fixed

memory location
 Firmware used to hold initial boot code

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

End of Chapter 2

	Chapter 2: Operating-System Structures
	Chapter 2: Operating-System Structures
	Objectives
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.)
	A View of Operating System Services
	User Operating System Interface - CLI
	User Operating System Interface - GUI
	Bourne Shell Command Interpreter
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	Standard C Library Example
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls (Cont.)
	Examples of Windows and �Unix System Calls
	Example: MS-DOS
	MS-DOS execution
	Example: FreeBSD
	FreeBSD Running Multiple Programs
	System Programs
	System Programs
	System Programs (Cont.)
	Operating System Design �and Implementation
	Operating System Design and �Implementation (Cont.)
	Simple Structure
	MS-DOS Layer Structure
	Layered Approach
	Traditional UNIX System Structure
	UNIX
	Layered Operating System
	Microkernel System Structure
	Mac OS X Structure
	Modules
	Solaris Modular Approach
	Virtual Machines
	Virtual Machines History and Benefits
	Virtual Machines (Cont.)
	Para-virtualization
	Virtualization Implementation
	Solaris 10 with Two Containers
	VMware Architecture
	The Java Virtual Machine
	Operating-System Debugging
	Solaris 10 dtrace Following System Call
	Operating System Generation
	System Boot
	End of Chapter 2

