
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling
 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Operating Systems Examples
 Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Objectives
 To introduce CPU scheduling, which is the basis for multiprogrammed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

5.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

 CPU burst distribution

5.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Alternating Sequence of CPU and
I/O Bursts

5.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

CPU Scheduler
 Selects from among the processes in ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways
 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

 Consider access to shared data
 Consider preemption while in kernel mode
 Consider interrupts occurring during crucial OS activities

5.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this
involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start another running

5.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Scheduling Criteria
 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the first response is

produced, not output (for time-sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

5.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 30 0

5.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order:
 P2 , P3 , P1
 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1 P3 P2

6 3 30 0

5.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling
 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes
 The difficulty is knowing the length of the next CPU request
 Could ask the user

5.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of SJF
 ProcessArriva l Time Burst Time
 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3
 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3 P1

3 16 0 9

P2

24

5.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Determining Length of Next CPU Burst
 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using exponential averaging

 Commonly, α set to ½
 Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+==

5.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Prediction of the Length of the
Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Examples of Exponential Averaging
 α =0

 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = α tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …
 +(1 - α)j α tn -j + …
 +(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its
predecessor

5.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to the analysis

 ProcessA arri Arrival TimeT Burst Time
 P1 0 8
 P2 1 4
 P3 2 9
 P4 3 5
 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

P1 P1 P2

1 17 0 10

P3

26 5

P4

5.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Priority Scheduling
 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted next CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the process

5.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

P2 P3 P5

1 18 0 16

P4

19 6

P1

5.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

 Timer interrupts every quantum to schedule next process
 Performance

 q large ⇒ FIFO
 q small ⇒ q must be large with respect to context switch, otherwise overhead is too high

5.22 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response
 q should be large compared to context switch time
 q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time

5.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Turnaround Time Varies With
The Time Quantum

80% of CPU bursts should
be shorter than q

5.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multilevel Queue
 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)
 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues:
 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of

starvation.
 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its

processes; i.e., 80% to foreground in RR
 20% to background in FCFS

5.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter when that process needs service

5.28 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue
 Three queues:

 Q0 – RR with time quantum 8 milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS
 When it gains CPU, job receives 8 milliseconds
 If it does not finish in 8 milliseconds, job is moved to queue Q1

 At Q1 job is again served FCFS and receives 16 additional milliseconds
 If it still does not complete, it is preempted and moved to queue Q2

5.29 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multilevel Feedback Queues

5.30 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads supported, threads scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
 Known as process-contention scope (PCS) since scheduling competition is within the process
 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all

threads in system

5.31 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation
 PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling
 PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow PTHREAD_SCOPE_SYSTEM

5.32 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Pthread Scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{
 int i;
 pthread t tid[NUM THREADS];
 pthread attr t attr;
 /* get the default attributes */
 pthread attr init(&attr);
 /* set the scheduling algorithm to PROCESS or SYSTEM */
 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
 /* set the scheduling policy - FIFO, RT, or OTHER */
 pthread attr setschedpolicy(&attr, SCHED OTHER);
 /* create the threads */
 for (i = 0; i < NUM THREADS; i++)
 pthread create(&tid[i],&attr,runner,NULL);

5.33 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Pthread Scheduling API

 /* now join on each thread */
 for (i = 0; i < NUM THREADS; i++)
 pthread join(tid[i], NULL);
}
 /* Each thread will begin control in this function */
void *runner(void *param)
{
 printf("I am a thread\n");
 pthread exit(0);
}

5.34 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the
need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready
queue, or each has its own private queue of ready processes
 Currently, most common

 Processor affinity – process has affinity for processor on which it is currently running
 soft affinity
 hard affinity
 Variations including processor sets

5.35 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider
affinity

5.36 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multicore Processors
 Recent trend to place multiple processor cores on same physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread while memory retrieve
happens

5.37 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Multithreaded Multicore System

5.38 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Virtualization and Scheduling
 Virtualization software schedules multiple guests onto CPU(s)

 Each guest doing its own scheduling

 Not knowing it doesn’t own the CPUs
 Can result in poor response time
 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

5.39 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Operating System Examples

 Solaris scheduling
 Windows XP scheduling
 Linux scheduling

5.40 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris
 Priority-based scheduling
 Six classes available

 Time sharing (default)
 Interactive
 Real time
 System
 Fair Share
 Fixed priority

 Given thread can be in one class at a time
 Each class has its own scheduling algorithm
 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

5.41 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris Dispatch Table

5.42 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris Scheduling

5.43 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris Scheduling (Cont.)
 Scheduler converts class-specific priorities into a per-thread global priority

 Thread with highest priority runs next
 Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
 Multiple threads at same priority selected via RR

5.44 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Windows Scheduling
 Windows uses priority-based preemptive scheduling
 Highest-priority thread runs next
 Dispatcher is scheduler
 Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread
 Real-time threads can preempt non-real-time
 32-level priority scheme
 Variable class is 1-15, real-time class is 16-31
 Priority 0 is memory-management thread
 Queue for each priority
 If no run-able thread, runs idle thread

5.45 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Windows Priority Classes
 Win32 API identifies several priority classes to which a process can belong

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME
 A thread within a given priority class has a relative priority

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE
 Priority class and relative priority combine to give numeric priority
 Base priority is NORMAL within the class
 If quantum expires, priority lowered, but never below base
 If wait occurs, priority boosted depending on what was waited for
 Foreground window given 3x priority boost

5.46 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Windows XP Priorities

5.47 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Linux Scheduling

 Constant order O(1) scheduling time
 Preemptive, priority based
 Two priority ranges: time-sharing and real-time
 Real-time range from 0 to 99 and nice value from 100 to 140
 Map into global priority with numerically lower values indicating higher priority
 Higher priority gets larger q
 Task run-able as long as time left in time slice (active)
 If no time left (expired), not run-able until all other tasks use their slices
 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)
 Tasks indexed by priority
 When no more active, arrays are exchanged

5.48 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Linux Scheduling (Cont.)
 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities
 All other tasks dynamic based on nice value plus or minus 5

 Interactivity of task determines plus or minus
 More interactive -> more minus

 Priority recalculated when task expired
 This exchanging arrays implements adjusted priorities

5.49 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Priorities and Time-slice length

5.50 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

List of Tasks Indexed
According to Priorities

5.51 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?

 Determine criteria, then evaluate algorithms

 Deterministic modeling
 Type of analytic evaluation
 Takes a particular predetermined workload and defines the performance of each algorithm for that

workload

5.52 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Queueing Models
 Describes the arrival of processes, and CPU and I/O bursts probabilistically

 Commonly exponential, and described by mean
 Computes average throughput, utilization, waiting time, etc

 Computer system described as network of servers, each with queue of waiting processes
 Knowing arrival rates and service rates
 Computes utilization, average queue length, average wait time, etc

5.53 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Little’s Formula
 n = average queue length
 W = average waiting time in queue
 λ = average arrival rate into queue
 Little’s law – in steady state, processes leaving queue must equal processes arriving, thus

n = λ x W
 Valid for any scheduling algorithm and arrival distribution

 For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait

time per process = 2 seconds

5.54 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Simulations
 Queueing models limited
 Simulations more accurate

 Programmed model of computer system
 Clock is a variable
 Gather statistics indicating algorithm performance
 Data to drive simulation gathered via

 Random number generator according to probabilities
 Distributions defined mathematically or empirically
 Trace tapes record sequences of real events in real systems

5.55 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Evaluation of CPU Schedulers
by Simulation

5.56 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Implementation

 Even simulations have limited accuracy
 Just implement new scheduler and test in real systems

 High cost, high risk
 Environments vary

 Most flexible schedulers can be modified per-site or per-system
 Or APIs to modify priorities
 But again environments vary

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

End of Chapter 5

5.58 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

5.08

5.59 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

In-5.7

5.60 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

In-5.8

5.61 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

In-5.9

5.62 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Dispatch Latency

5.63 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Java Thread Scheduling

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

 FIFO Queue is Used if There Are Multiple Threads With the Same Priority

5.64 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Java Thread Scheduling (Cont.)
JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

 * Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

5.65 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

 while (true) {
 // perform CPU-intensive task
 . . .
 Thread.yield();
 }

This Yields Control to Another Thread of Equal Priority

5.66 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Thread Priorities

Priority Comment

Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
 setPriority(Thread.NORM_PRIORITY + 2);

5.67 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solaris 2 Scheduling

	Chapter 5: CPU Scheduling
	Chapter 5: CPU Scheduling
	Objectives
	Basic Concepts
	Alternating Sequence of CPU and �I/O Bursts
	Histogram of CPU-burst Times
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the �Next CPU Burst
	Examples of Exponential Averaging
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Turnaround Time Varies With �The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multicore Processors
	Multithreaded Multicore System
	Virtualization and Scheduling
	Operating System Examples
	Solaris
	Solaris Dispatch Table
	Solaris Scheduling
	Solaris Scheduling (Cont.)
	Windows Scheduling
	Windows Priority Classes
	Windows XP Priorities
	Linux Scheduling
	Linux Scheduling (Cont.)
	Priorities and Time-slice length
	List of Tasks Indexed �According to Priorities
	Algorithm Evaluation
	Queueing Models
	Little’s Formula
	Simulations
	Evaluation of CPU Schedulers �by Simulation
	Implementation
	End of Chapter 5
	5.08
	In-5.7
	In-5.8
	In-5.9
	Dispatch Latency
	Java Thread Scheduling
	Java Thread Scheduling (Cont.)
	Time-Slicing
	Thread Priorities
	Solaris 2 Scheduling

