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Objectives 
 To introduce CPU scheduling, which is the basis for multiprogrammed operating systems 

 
 To describe various CPU-scheduling algorithms 

 
 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system 
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Basic Concepts 

 Maximum CPU utilization obtained with multiprogramming 
 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait 
 

 CPU burst distribution 
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Alternating Sequence of CPU and  
I/O Bursts 
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Histogram of CPU-burst Times 
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CPU Scheduler 
 Selects from among the processes in ready queue, and allocates the CPU to one of them 

 Queue may be ordered in various ways 
 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 
2. Switches from running to ready state 
3. Switches from waiting to ready 
4. Terminates 

 Scheduling under 1 and 4 is nonpreemptive 
 All other scheduling is preemptive 

 Consider access to shared data 
 Consider preemption while in kernel mode 
 Consider interrupts occurring during crucial OS activities 
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Dispatcher 

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this 
involves: 
 switching context 
 switching to user mode 
 jumping to the proper location in the user program to restart that program 

 
 Dispatch latency – time it takes for the dispatcher to stop one process and start another running 
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Scheduling Criteria 
 CPU utilization – keep the CPU as busy as possible 

 
 Throughput – # of processes that complete their execution per time unit 

 
 Turnaround time – amount of time to execute a particular process 

 
 Waiting time – amount of time a process has been waiting in the ready queue 

 
 Response time – amount of time it takes from when a request was submitted until the first response is 

produced, not output  (for time-sharing environment) 
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Scheduling Algorithm Optimization Criteria 

 Max CPU utilization 
 Max throughput 
 Min turnaround time  
 Min waiting time  
 Min response time 
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First-Come, First-Served (FCFS) Scheduling 

  Process Burst Time  
   P1 24 
   P2  3 
   P3  3  

 Suppose that the processes arrive in the order: P1 , P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 
 

 
 Waiting time for P1  = 0; P2  = 24; P3 = 27 
 Average waiting time:  (0 + 24 + 27)/3 = 17 

P1 P2 P3 

24 27 30 0 
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FCFS Scheduling (Cont.) 
Suppose that the processes arrive in the order: 
   P2 , P3 , P1  
 The Gantt chart for the schedule is: 

 
 
 
 
 
 
 

 Waiting time for P1 = 6; P2 = 0; P3 = 3 
 Average waiting time:   (6 + 0 + 3)/3 = 3 
 Much better than previous case 
 Convoy effect - short process behind long process 

 Consider one CPU-bound and many I/O-bound processes 

P1 P3 P2 

6 3 30 0 



5.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition 

Shortest-Job-First (SJF) Scheduling 
 Associate with each process the length of its next CPU burst 

  Use these lengths to schedule the process with the shortest time 
 

 SJF is optimal – gives minimum average waiting time for a given set of processes 
 The difficulty is knowing the length of the next CPU request 
 Could ask the user 
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Example of SJF 
                        ProcessArriva l Time Burst Time 
   P1 0.0 6 
   P2  2.0 8 
   P3 4.0 7 
   P4 5.0 3 
 SJF scheduling chart 

 
 
 
 
 

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 

P4 P3 P1 

3 16 0 9 

P2 

24 
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Determining Length of Next CPU Burst 
 Can only estimate the length – should be similar to the previous one 

 Then pick process with shortest predicted next CPU burst 
 

 Can be done by using the length of previous CPU bursts, using exponential averaging 
 
 
 
 
 
 
 

 Commonly, α set to ½ 
 Preemptive version called shortest-remaining-time-first 
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Prediction of the Length of the  
Next CPU Burst 
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Examples of Exponential Averaging 
 α =0 

 τn+1 = τn 

 Recent history does not count 
 α =1 

  τn+1 = α tn 

 Only the actual last CPU burst counts 
 If we expand the formula, we get: 

τn+1 = α tn+(1 - α)α tn -1 + … 
            +(1 - α )j α tn -j + … 
            +(1 - α )n +1 τ0 

 

 Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its 
predecessor 
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Example of Shortest-remaining-time-first 

 Now we add the concepts of varying arrival times and preemption to the analysis 
 
           ProcessA arri Arrival TimeT Burst Time 
   P1 0 8 
   P2  1 4 
   P3 2 9 
   P4 3 5 
 Preemptive SJF Gantt Chart 

 
 
 
 
 

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec 
 

 

P1 P1 P2 

1 17 0 10 

P3 

26 5 

P4 
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Priority Scheduling 
 A priority number (integer) is associated with each process 

 

 The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority) 
 Preemptive 
 Nonpreemptive 

 

 SJF is priority scheduling where priority is the inverse of predicted next CPU burst time 
 

 Problem ≡ Starvation – low priority processes may never execute 
 

 Solution ≡ Aging – as time progresses increase the priority of the process 
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Example of Priority Scheduling 

           ProcessA arri Burst TimeT Priority 
   P1 10 3 
   P2  1 1 
   P3 2 4 
   P4 1 5 
  P5 5 2 

 Priority scheduling Gantt Chart 
 
 
 
 
 

 Average waiting time = 8.2 msec 

P2 P3 P5 

1 18 0 16 

P4 

19 6 

P1 
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Round Robin (RR) 

 Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds.  After this 
time has elapsed, the process is preempted and added to the end of the ready queue. 

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the 
CPU time in chunks of at most q time units at once.  No process waits more than (n-1)q time units. 

 Timer interrupts every quantum to schedule next process 
 Performance 

 q large ⇒ FIFO 
 q small ⇒ q must be large with respect to context switch, otherwise overhead is too high 
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Example of RR with Time Quantum = 4 

  Process Burst Time 
  P1 24 
   P2  3 
   P3 3 
   
 The Gantt chart is:  

 
 
 
 
 
 

 Typically, higher average turnaround than SJF, but better response 
 q should be large compared to context switch time 
 q usually 10ms to 100ms, context switch < 10 usec 

P1 P2 P3 P1 P1 P1 P1 P1 

0 4 7 10 14 18 22 26 30 
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Time Quantum and Context Switch Time 
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Turnaround Time Varies With  
The Time Quantum 

80% of CPU bursts should 
be shorter than q 
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Multilevel Queue 
 Ready queue is partitioned into separate queues, eg: 

 foreground (interactive) 
 background (batch) 

 Process permanently in a given queue 
 

 Each queue has its own scheduling algorithm: 
 foreground – RR 
 background – FCFS 

 

 Scheduling must be done between the queues: 
 Fixed priority scheduling; (i.e., serve all from foreground then from background).  Possibility of 

starvation. 
 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its 

processes; i.e., 80% to foreground in RR 
 20% to background in FCFS  
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Multilevel Queue Scheduling 
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Multilevel Feedback Queue 

 A process can move between the various queues; aging can be implemented this way 
 

 Multilevel-feedback-queue scheduler defined by the following parameters: 
 number of queues 
 scheduling algorithms for each queue 
 method used to determine when to upgrade a process 
 method used to determine when to demote a process 
 method used to determine which queue a process will enter when that process needs service 
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Example of Multilevel Feedback Queue 
 Three queues:  

 Q0 – RR with time quantum 8 milliseconds 
 Q1 – RR time quantum 16 milliseconds 
 Q2 – FCFS 

 
 Scheduling 

 A new job enters queue Q0 which is served FCFS 
 When it gains CPU, job receives 8 milliseconds 
 If it does not finish in 8 milliseconds, job is moved to queue Q1 

 At Q1 job is again served FCFS and receives 16 additional milliseconds 
 If it still does not complete, it is preempted and moved to queue Q2 
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Multilevel Feedback Queues 
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Thread Scheduling 

 Distinction between user-level and kernel-level threads 
 

 When threads supported, threads scheduled, not processes 
 

 Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP 
 Known as process-contention scope (PCS) since scheduling competition is within the process 
 Typically done via priority set by programmer 

 
 Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition among all 

threads in system 
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Pthread Scheduling 

 API allows specifying either PCS or SCS during thread creation 
 PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling 
 PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling 

 Can be limited by OS – Linux and Mac OS X only allow PTHREAD_SCOPE_SYSTEM 
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Pthread Scheduling API 
#include <pthread.h> 
#include <stdio.h> 
#define NUM THREADS 5 
int main(int argc, char *argv[]) 
{ 
 int i; 
 pthread t tid[NUM THREADS]; 
 pthread attr t attr; 
 /* get the default attributes */ 
 pthread attr init(&attr); 
 /* set the scheduling algorithm to PROCESS or SYSTEM */ 
 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); 
 /* set the scheduling policy - FIFO, RT, or OTHER */ 
 pthread attr setschedpolicy(&attr, SCHED OTHER); 
 /* create the threads */ 
 for (i = 0; i < NUM THREADS; i++) 
  pthread create(&tid[i],&attr,runner,NULL); 
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Pthread Scheduling API 

 /* now join on each thread */ 
 for (i = 0; i < NUM THREADS; i++) 
  pthread join(tid[i], NULL); 
} 
 /* Each thread will begin control in this function */ 
void *runner(void *param) 
{  
 printf("I am a thread\n"); 
 pthread exit(0); 
} 
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Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are available 
 

 Homogeneous processors within a multiprocessor 
 

 Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the 
need for data sharing 
 

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready 
queue, or each has its own private queue of ready processes 
 Currently, most common 

 

 Processor affinity – process has affinity for processor on which it is currently running 
 soft affinity 
 hard affinity 
 Variations including processor sets 
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NUMA and CPU Scheduling 

Note that memory-placement algorithms can also consider 
affinity 
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Multicore Processors 
 Recent trend to place multiple processor cores on same physical chip 

 
 Faster and consumes less power 

 
 Multiple threads per core also growing 

 Takes advantage of memory stall to make progress on another thread while memory retrieve 
happens 
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Multithreaded Multicore System 
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Virtualization and Scheduling 
 Virtualization software schedules multiple guests onto CPU(s) 

 
 Each guest doing its own scheduling 

 Not knowing it doesn’t own the CPUs 
 Can result in poor response time 
 Can effect time-of-day clocks in guests 

 
 Can undo good scheduling algorithm efforts of guests 
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Operating System Examples 
 

 Solaris scheduling 
 Windows XP scheduling 
 Linux scheduling 
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Solaris 
 Priority-based scheduling 
 Six classes available 

 Time sharing (default) 
 Interactive 
 Real time 
 System 
 Fair Share 
 Fixed priority 

 Given thread can be in one class at a time 
 Each class has its own scheduling algorithm 
 Time sharing is multi-level feedback queue 

 Loadable table configurable by sysadmin 
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Solaris Dispatch Table  
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Solaris Scheduling 
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Solaris Scheduling (Cont.) 
 Scheduler converts class-specific priorities into a per-thread global priority 

 Thread with highest priority runs next 
 Runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread 
 Multiple threads at same priority selected via RR 
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Windows Scheduling 
 Windows uses priority-based preemptive scheduling 
 Highest-priority thread runs next 
 Dispatcher is scheduler 
 Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-priority thread 
 Real-time threads can preempt non-real-time 
 32-level priority scheme 
 Variable class is 1-15, real-time class is 16-31 
 Priority 0 is memory-management thread 
 Queue for each priority 
 If no run-able thread, runs idle thread 
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Windows Priority Classes 
 Win32 API identifies several priority classes to which a process can belong 

 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS 

 All are variable except REALTIME 
 A thread within a given priority class has a relative priority 

 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, LOWEST, IDLE 
 Priority class and relative priority combine to give numeric priority 
 Base priority is NORMAL within the class 
 If quantum expires, priority lowered, but never below base 
 If wait occurs, priority boosted depending on what was waited for 
 Foreground window given 3x priority boost 
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Windows XP Priorities 
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Linux Scheduling 

 Constant order O(1) scheduling time 
 Preemptive, priority based 
 Two priority ranges: time-sharing and real-time 
 Real-time range from 0 to 99 and nice value from 100 to 140 
 Map into  global priority with numerically lower values indicating higher priority 
 Higher priority gets larger q 
 Task run-able as long as time left in time slice (active) 
 If no time left (expired), not run-able until all other tasks use their slices 
 All run-able tasks tracked in per-CPU runqueue data structure 

 Two priority arrays (active, expired) 
 Tasks indexed by priority 
 When no more active, arrays are exchanged 
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Linux Scheduling (Cont.) 
 Real-time scheduling according to POSIX.1b 

 Real-time tasks have static priorities 
 All other tasks dynamic based on nice value plus or minus 5 

 Interactivity of task determines plus or minus 
 More interactive -> more minus 

 Priority recalculated when task expired 
 This exchanging arrays implements adjusted priorities 
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Priorities and Time-slice length 
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List of Tasks Indexed  
According to Priorities 
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Algorithm Evaluation 

 How to select CPU-scheduling algorithm for an OS? 
 

 Determine criteria, then evaluate algorithms 
 

 Deterministic modeling 
 Type of analytic evaluation 
 Takes a particular predetermined workload and defines the performance of each algorithm  for that 

workload 
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Queueing Models 
 Describes the arrival of processes, and CPU and I/O bursts probabilistically 

 Commonly exponential, and described by mean 
 Computes average throughput, utilization, waiting time, etc 

 Computer system described as network of servers, each with queue of waiting processes 
 Knowing arrival rates and service rates 
 Computes utilization, average queue length, average wait time, etc 
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Little’s Formula 
 n = average queue length 
 W = average waiting time in queue 
 λ = average arrival rate into queue 
 Little’s law – in steady state, processes leaving queue must equal processes arriving, thus 

n = λ x W 
 Valid for any scheduling algorithm and arrival distribution 

 
 For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait 

time per process = 2 seconds 
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Simulations 
 Queueing models limited 
 Simulations more accurate 

 Programmed model of computer system 
 Clock is a variable 
 Gather statistics  indicating algorithm performance 
 Data to drive simulation gathered via 

 Random number generator according to probabilities 
 Distributions defined mathematically or empirically 
 Trace tapes record sequences of real events in real systems 
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Evaluation of CPU Schedulers  
by Simulation 
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Implementation 

 Even simulations have limited accuracy 
 Just implement new scheduler and test in real systems 

 High cost, high risk 
 Environments vary 

 Most flexible schedulers can be modified per-site or per-system 
 Or APIs to modify priorities 
 But again environments vary 
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End of Chapter 5 
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5.08 
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In-5.7 
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In-5.8 
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In-5.9 
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Dispatch Latency 
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Java Thread Scheduling 

 JVM Uses a Preemptive, Priority-Based Scheduling Algorithm 
 
 

 FIFO Queue is Used if There Are Multiple Threads With the Same Priority 
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Java Thread Scheduling (Cont.) 
JVM Schedules a Thread to Run When: 
 

1. The Currently Running Thread Exits the Runnable State 
2. A Higher Priority Thread Enters the Runnable State 

 
   * Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not 
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Time-Slicing 

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method  
May Be Used: 

 
 while (true) { 
  // perform CPU-intensive task 
  . . . 
  Thread.yield(); 
 } 
 
This Yields Control to Another Thread of Equal Priority 
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Thread Priorities 

 
Priority   Comment 

Thread.MIN_PRIORITY  Minimum Thread Priority 
Thread.MAX_PRIORITY                Maximum Thread Priority 
Thread.NORM_PRIORITY                Default Thread Priority 
 
Priorities May Be Set Using setPriority() method: 
 setPriority(Thread.NORM_PRIORITY + 2); 
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Solaris 2 Scheduling 
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