
Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials– 8th Edition

Chapter 13: Protection

13.2 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 13: Protection

Goals of Protection
Principles of Protection
Domain of Protection
Access Matrix
Implementation of Access Matrix
Access Control
Revocation of Access Rights
Capability-Based Systems
Language-Based Protection

13.3 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Objectives
Discuss the goals and principles of protection in a modern computer system

Explain how protection domains combined with an access matrix are used to specify the resources a
process may access

Examine capability and language-based protection systems

13.4 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Goals of Protection
In one protection model, computer consists of a collection of objects, hardware or software

Each object has a unique name and can be accessed through a well-defined set of operations

Protection problem - ensure that each object is accessed correctly and only by those processes that are
allowed to do so

13.5 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Principles of Protection
Guiding principle – principle of least privilege

Programs, users and systems should be given just enough privileges to perform their tasks
Limits damage if entity has a bug, gets abused
Can be static (during life of system, during life of process)
Or dynamic (changed by process as needed) – domain switching, privilege escalation
“Need to know” a similar concept regarding access to data

Must consider “grain” aspect
Rough-grained privilege management easier, simpler, but least privilege now done in large chunks

For example, traditional Unix processes either have abilities of the associated user, or of root
Fine-grained management more complex, more overhead, but more protective

File ACL lists, RBAC

Domain can be user, process, procedure

13.6 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Domain Structure
Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can be performed on the object

Domain = set of access-rights

13.7 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Domain Implementation (UNIX)
Domain = user-id

Domain switch accomplished via file system
Each file has associated with it a domain bit (setuid bit)
When file is executed and setuid = on, then user-id is set to owner of the file being executed
When execution completes user-id is reset

Domain switch accomplished via passwords
su command temporarily switches to another user’s domain when other domain’s password
provided

Domain switching via commands
sudo command prefix executes specified command in another domain (if original domain has
privilege or password given)

13.8 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Domain Implementation (MULTICS)

Let Di and Dj be any two domain rings
If j < I ⇒ Di ⊆ Dj

13.9 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Multics Benefits and Limits
Ring / hierarchical structure provided more than the basic kernel / user or root / normal user design

Fairly complex -> more overhead

But does not allow strict need-to-know
Object accessible in Dj but not in Di, then j must be < i
But then every segment accessible in Di also accessible in Dj

13.10 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Matrix
View protection as a matrix (access matrix)

Rows represent domains

Columns represent objects

Access(i, j) is the set of operations that a process executing in Domaini can invoke on Objectj

13.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Matrix

13.12 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Use of Access Matrix
If a process in Domain Di tries to do “op” on object Oj, then “op” must be in the access matrix

User who creates object can define access column for that object

Can be expanded to dynamic protection
Operations to add, delete access rights
Special access rights:

owner of Oi

copy op from Oi to Oj (denoted by “*”)
control – Di can modify Dj access rights
transfer – switch from domain Di to Dj

Copy and Owner applicable to an object
Control applicable to domain object

13.13 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Use of Access Matrix (Cont.)
Access matrix design separates mechanism from policy

Mechanism
Operating system provides access-matrix + rules
If ensures that the matrix is only manipulated by authorized agents and that rules are strictly
enforced

Policy
User dictates policy
Who can access what object and in what mode

But doesn’t solve the general confinement problem

13.14 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Matrix of Figure A
with Domains as Objects

13.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Matrix with Copy Rights

13.16 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Matrix With Owner Rights

13.17 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Modified Access Matrix of Figure B

13.18 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Implementation of Access Matrix
Generally, a sparse matrix
Option 1 – Global table

Store ordered triples < domain, object, rights-set > in table
A requested operation M on object Oj within domain Di -> search table for < Di, Oj, Rk >

with M Rk

But table could be large -> won’t fit in main memory
Difficult to group objects (consider an object that all domains can read)

Option 2 – Access lists for objects
Each column implemented as an access list for one object
Resulting per-object list consists of ordered pairs < domain, rights-set > defining all domains
with non-empty set of access rights for the object
Easily extended to contain default set -> If M default set, also allow access

13.19 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy

13.20 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Implementation of Access Matrix (Cont.)
Option 3 – Capability list for domains

Instead of object-based, list is domain based
Capability list for domain is list of objects together with operations allows on them
Object represented by its name or address, called a capability
Execute operation M on object Oj, process requests operation and specifies capability as parameter

Possession of capability means access is allowed
Capability list associated with domain but never directly accessible by domain

Rather, protected object, maintained by OS and accessed indirectly
Like a “secure pointer”
Idea can be extended up to applications

Option 4 – Lock-key
Compromise between access lists and capability lists
Each object has list of unique bit patterns, called locks
Each domain as list of unique bit patterns called keys
Process in a domain can only access object if domain has key that matches one of the locks

13.21 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Comparison of Implementations
Many trade-offs to consider

Global table is simple, but can be large
Access lists correspond to needs of users

Determining set of access rights for domain non-localized so difficult
Every access to an object must be checked

– Many objects and access rights -> slow
Capability lists useful for localizing information for a given process

But revocation capabilities can be inefficient
Lock-key effective and flexible, keys can be passed freely from domain to domain, easy revocation

Most systems use combination of access lists and capabilities
First access to an object -> access list searched

If allowed, capability created and attached to process
– Additional accesses need not be checked

After last access, capability destroyed
Consider file system with ACLs per file

13.22 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Control
Protection can be applied to non-file resources

Solaris 10 provides role-based access control (RBAC) to implement least privilege
Privilege is right to execute system call or use an option within a system call
Can be assigned to processes
Users assigned roles granting access to privileges and programs

Enable role via password to gain its privileges
Similar to access matrix

13.23 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Role-based Access Control in Solaris 10

13.24 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Revocation of Access Rights
Various options to remove the access right of a domain to an object

Immediate vs. delayed
Selective vs. general
Partial vs. total
Temporary vs. permanent

Access List – Delete access rights from access list
Simple – search access list and remove entry
Immediate, general or selective, total or partial, permanent or temporary

Capability List – Scheme required to locate capability in the system before capability can be revoked
Reacquisition – periodic delete, with require and denial if revoked
Back-pointers – set of pointers from each object to all capabilities of that object (Multics)
Indirection – capability points to global table entry which points to object – delete entry from global
table, not selective (CAL)
Keys – unique bits associated with capability, generated when capability created

Master key associated with object, key matches master key for access
Revocation – create new master key
Policy decision of who can create and modify keys – object owner or others?

13.25 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Capability-Based Systems
Hydra

Fixed set of access rights known to and interpreted by the system
i.e. read, write, or execute each memory segment
User can declare other auxiliary rights and register those with protection system
Accessing process must hold capability and know name of operation
Rights amplification allowed by trustworthy procedures for a specific type

Interpretation of user-defined rights performed solely by user's program; system provides access
protection for use of these rights
Operations on objects defined procedurally – procedures are objects accessed indirectly by
capabilities
Solves the problem of mutually suspicious subsystems
Includes library of prewritten security routines

Cambridge CAP System
Simpler but powerful
Data capability - provides standard read, write, execute of individual storage segments
associated with object – implemented in microcode
Software capability -interpretation left to the subsystem, through its protected procedures

Only has access to its own subsystem
Programmers must learn principles and techniques of protection

13.26 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Language-Based Protection
Specification of protection in a programming language allows the high-level description of policies for the
allocation and use of resources

Language implementation can provide software for protection enforcement when automatic hardware-
supported checking is unavailable

Interpret protection specifications to generate calls on whatever protection system is provided by the
hardware and the operating system

13.27 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Protection in Java 2
Protection is handled by the Java Virtual Machine (JVM)

A class is assigned a protection domain when it is loaded by the JVM

The protection domain indicates what operations the class can (and cannot) perform

If a library method is invoked that performs a privileged operation, the stack is inspected to ensure the
operation can be performed by the library

13.28 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Stack Inspection

Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials– 8th Edition

End of Chapter 13

	Chapter 13: Protection
	Chapter 13: Protection
	Objectives
	Goals of Protection
	Principles of Protection
	Domain Structure
	Domain Implementation (UNIX)
	Domain Implementation (MULTICS)
	Multics Benefits and Limits
	Access Matrix
	Access Matrix
	Use of Access Matrix
	Use of Access Matrix (Cont.)
	Access Matrix of Figure A �with Domains as Objects
	Access Matrix with Copy Rights
	Access Matrix With Owner Rights
	Modified Access Matrix of Figure B
	Implementation of Access Matrix
	Slide Number 19
	Implementation of Access Matrix (Cont.)
	Comparison of Implementations
	Access Control
	Role-based Access Control in Solaris 10
	Revocation of Access Rights
	Capability-Based Systems
	Language-Based Protection
	Protection in Java 2
	Stack Inspection
	End of Chapter 13

