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N Objectives

® To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

B To discuss the APIs for the Pthreads, Win32, and Java thread libraries

B To examine issues related to multithreaded programming
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o Motivation

Threads run within application
Multiple tasks with the application can be implemented by separate threads
e Update display
e Fetch data
e Spell checking
e Answer a network request
Process creation is heavy-weight while thread creation is light-weight
Can simplify code, increase efficiency
Kernels are generally multithreaded
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Single and Multithreaded Processes
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G Benefits

B Responsiveness
B Resource Sharing
® Economy

m  Scalability
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> &1 Multicore Programming

e

®  Multicore systems putting pressure on programmers, challenges include:
e Dividing activities
e Balance
e Data splitting
e Data dependency
e Testing and debugging

U
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_ (™ Concurrent Execution on a
Single-core System
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™ Parallel Execution on a
ik Multicore System
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)
& User Threads

-

®  Thread management done by user-level threads library

®  Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Javathreads

g
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't Kernel Threads

®  Supported by the Kernel

®m  Examples
e Windows XP/2000

e Solaris

e Linux

e Tru64 UNIX
e MacOSX

“
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S Multithreading Models

®  Many-to-One

B One-to-One

®  Many-to-Many
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B Many user-level threads mapped to single kernel thread

®m  Examples:
e Solaris Green Threads
e GNU Portable Threads
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o Many-to-One Model
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o One-to-One

®  Each user-level thread maps to kernel thread

®m  Examples
e Windows NT/XP/2000
e Linux
e Solaris 9 and later

U
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s One-to-one Model
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& Many-to-Many Model

®  Allows many user level threads to be mapped to many kernel threads

m  Allows the operating system to create a sufficient number of kernel threads

m  Solaris prior to version 9

®  Windows NT/2000 with the ThreadFiber package
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P
't Many-to-Many Model
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R o
v & Two-level Model

LS

®  Similar to M:M, except that it allows a user thread to be bound to kernel thread

®m  Examples

e IRIX
e HP-UX
e Tru64 UNIX

e Solaris 8 and earlier

U
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g Two-level Model
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r & Thread Libraries

e

m  Thread library provides programmer with API for creating and managing threads

B Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

U

Operating System Concepts Essentials — 8 Edition 4.22 Silberschatz, Galvin and Gagne ©2011




V}/p—/ Pthreads

B May be provided either as user-level or kernel-level

®m A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

B API specifies behavior of the thread library, implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)
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P
o Pthreads Example

#include <=pthread.h>
finclude <=stdio.h:=

int sum; /* this data is shared by the thread{s) =/
void *runner(veid *para=); /* the thread =*/

int main(int argc, char =argv[])

{

pthread t tid; /* the thread identifier =/
pthread attr t attr; /* set of thread attributes =/

if {argc = 2) {

fprintf (stderr,"usage: a.out <integer wvalue>\n");
return —1;

if (atoifargv[i]) < 0) {

fprintf (stderr,"fd muat be »>= 0\n" ,atoifargw(i]));
return -—-1;

U
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55 Pthreads Example (Cont.)

/= gat the default attributes */

pthread attr-init(&attr);

/= create the thread =/

pthread create(ktid,kattr ,runner,argv[1]);
/= wait for the thread to exit =/

pthread join(tid , NULL);

priontf("auz = ¥d\o",sum) ;

}

/* The thread will begin comtrol in this functiom =*/
void *runner(void *param)

{
int i, upper = atoi{param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0) ;

Figure 4.8 Multithreaded C program usng the Pthreads AP

U
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“%7/Win32 APl Multithreaded C Program

#include =windows.h:>=

#include <stdic.hx>

DWORAD Surm; /* data is shared by the thread(s) =/
/= the thread runs in this separate function =/

DWOAD WINAPI Summation (LFVOID Param)

DWORD Upper = =*=(DWORD=*)Param;

for (DWORD i = 0; i <= Upper; i++)
Sum #= i;

return O;

}

int main(int argc, char =argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
f* perform some basic error checking */
if (argc != 2} |
fprintf{stderr,"An integer parameter is required\n");
reaturn -1;
%aram = atod(argv[1]);
if (Param < Q)
fprintf{stderr,"An integer »= 0 is required\n");
return -1;

}

U
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R

“$"Win32 API Multithreaded C Program (Cont.)

/¥ create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, ff default stack size
Summation, // thread functiom
&Para=m, // parameter to thread function
0, f/ default creation flags
EThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
F4 mow wait for the thread to fimnish
WaitForS8inglelbject (ThreadHandle , INFINITE} ;

F4 close the thread handle
CloseHandle{ThreadHandle) ;

printf("sum = ¥d\n",Sum);

Figure 4.10 Muftithreeded C program using the 'Win32 API.

U
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7 Java Threads

®  Java threads are managed by the JVM

m  Typically implemented using the threads model provided by underlying OS

®  Java threads may be created by:

e Extending Thread class
e Implementing the Runnable interface
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=i .
“$%7  Java Multithreaded Program

L .

class Sum
{

private int sum:

public int getSum{] {
Eturn sumy

}

public void setSum{int sum] |
this.sum = Sums
}
}

class Summation implements Runnable
private ink upper:
private Swum sumialuye:

public Summation(int upper, Sum sumValue) {
this_ upper = upper;
this. . sumaloe = sumifalioe:

}

public void run{) {
inTt sum = O;
far {int i = J; i «= wpper;
Sum 4 1
sumyalyue . sekSywmisom] s

}

(1]
-
-
-
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) ™ |
~4%7 Java Multithreaded Program (Cont.)

public class Driwer
{
public static void maini(String[] args) {
if jargs.length = 0] {
if {Integer parselnti{acge[d]] =« Q)
System.err.println(args [B6] + * must be == O.%)
mloe |
f/ create the object to be shared
Sum sumdbject = ew Sum{) ;
int upper = Integer. parseint {args[&] )
Thread thrd = mew Thread (pew Summatioon jupper, sumdbjectk)] :
thrd.start{) ;
ery {
thrd. join{) :
Eymtem.oukt . printlin
1*The sum of "supper+® is "ssumibject .getSumi)) @
} catch {InterruptedException ie] { }

1

else
System.err println{"Usage: Summation <integer valves®); }

Figure 4.11 Java program for the summation of a non-negative integer.

A
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't Threading Issues

m  Semantics of fork() and exec() system calls

m  Thread cancellation of target thread
e Asynchronous or deferred

®  Signal handling
e Synchronous and asynchronous

U

Operating System Concepts Essentials — 8th Edition 4.31 Silberschatz, Galvin and Gagne ©2011




ar«;;w Threading Issues (Cont.)

-

m Thread pools

Thread-specific data

m Create Facility needed for data private to thread
m  Scheduler activations
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T Semantics of fork() and exec()

m  Does fork() duplicate only the calling thread or all threads?
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& Thread Cancellation

®  Terminating a thread before it has finished

®m  Two general approaches:
e Asynchronous cancellation terminates the target thread immediately.
e Deferred cancellation allows the target thread to periodically check if it should be cancelled.
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L Signal Handling

m  Signals are used in UNIX systems to notify a process that a particular event has occurred.

m  Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

m  Options:
e Deliver the signal to the thread to which the signal applies
e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process
e Assign a specific thread to receive all signals for the process
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& Thread Pools

m  Create a number of threads in a pool where they await work

®  Advantages:
e Usually slightly faster to service a request with an existing thread than create a new thread
e Allows the number of threads in the application(s) to be bound to the size of the pool
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57 Thread Specific Data

e

®  Allows each thread to have its own copy of data

m  Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

g
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> & Scheduler Activations

®  Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

®  Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

B This communication allows an application to maintain the correct number kernel threads
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L Lightweight Processes
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55 Operating System Examples

®  Windows XP Threads

® Linux Thread
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“»”7 Windows XP Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
kernel TERB
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
4.41
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o Windows XP Threads

B Implements the one-to-one mapping, kernel-level

m  Each thread contains
e Athreadid
e Register set
e Separate user and kernel stacks
e Private data storage area

B The register set, stacks, and private storage area are known as the context of the threads

B  The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)
e TEB (thread environment block)
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5 Linux Threads

B Linux refers to them as tasks rather than threads

B Thread creation is done through clone() system call

m  clone() allows a child task to share the address space of the parent task (process)

B struct task struct points to process data structures (shared or unique)
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> Linux Threads

m  fork() and clone() system calls
®  Doesn’t distinguish between process and thread
m  Uses term task rather than thread
m  clone() takes options to determine sharing on process create
B struct task struct points to process data structures (shared or unique)

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.
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End of Chapter 4
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