Chapter 4. Threads

Operating System Concepts Essentials — 8" Edition Silberschatz, Galvin and Gagne ©2011

o Chapter 4: Threads

Overview

Multithreading Models
Thread Libraries

Threading Issues

Operating System Examples
Windows XP Threads

Linux Threads

U

Operating System Concepts Essentials — 8th Edition 4.2 Silberschatz, Galvin and Gagne ©2011

N Objectives

® To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

B To discuss the APIs for the Pthreads, Win32, and Java thread libraries

B To examine issues related to multithreaded programming

=S v\: L
.':K \‘\
. N
o
A A%

Operating System Concepts Essentials — 8th Edition 4.3 Silberschatz, Galvin and Gagne ©2011

o Motivation

Threads run within application
Multiple tasks with the application can be implemented by separate threads
e Update display
e Fetch data
e Spell checking
e Answer a network request
Process creation is heavy-weight while thread creation is light-weight
Can simplify code, increase efficiency
Kernels are generally multithreaded

Operating System Concepts Essentials — 8" Edition 4.4 Silberschatz, Galvin and Gagne ©2011

g ,«,nmj |
57

Single and Multithreaded Processes

Operating System Concepts Essentials — 8t Edition

code

data

files

registers

stack

thread —» ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
-‘_

— thread

multithreaded process

Silberschatz, Galvin and Gagne ©2011

G Benefits

B Responsiveness
B Resource Sharing
® Economy

m Scalability

Operating System Concepts Essentials — 8th Edition 4.6 Silberschatz, Galvin and Gagne ©2011

> &1 Multicore Programming

e

® Multicore systems putting pressure on programmers, challenges include:
e Dividing activities
e Balance
e Data splitting
e Data dependency
e Testing and debugging

U

Operating System Concepts Essentials — 8 Edition 4.7 Silberschatz, Galvin and Gagne ©2011

.f*","""‘j - i
=%/ Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

client > server » thread

U

(3) resume listening
for additional
client requests

Operating System Concepts Essentials — 8th Edition 4.8 Silberschatz, Galvin and Gagne ©2011

_ (™ Concurrent Execution on a
Single-core System

single core T4 To Ts Ty T, 1 s T T

time

A

Operating System Concepts Essentials — 8" Edition 4.9 Silberschatz, Galvin and Gagne ©2011

™ Parallel Execution on a
ik Multicore System

core 1 T4 Ta T4 T4 T4

core 2 To Ta Ts Ty To

Operating System Concepts Essentials — 8" Edition 4.10 Silberschatz, Galvin and Gagne ©2011

)
& User Threads

-

® Thread management done by user-level threads library

® Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Javathreads

g

Operating System Concepts Essentials — 8 Edition 4.11 Silberschatz, Galvin and Gagne ©2011

't Kernel Threads

® Supported by the Kernel

®m Examples
e Windows XP/2000

e Solaris

e Linux

e Tru64 UNIX
e MacOSX

“

Operating System Concepts Essentials — 8t Edition 4.12 Silberschatz, Galvin and Gagne ©2011

S Multithreading Models

® Many-to-One

B One-to-One

® Many-to-Many

Operating System Concepts Essentials — 8" Edition 4.13 Silberschatz, Galvin and Gagne ©2011

: i
ST Many-to-O
y-to-One

LS

B Many user-level threads mapped to single kernel thread

®m Examples:
e Solaris Green Threads
e GNU Portable Threads

Operating System Concepts Essentials — 8" Edition 4.14 Silberschatz, Galvin and Gagne ©2011

o Many-to-One Model

+— Lser thread

«— kernel thread

U

Operating System Concepts Essentials — 8th Edition 4.15 Silberschatz, Galvin and Gagne ©2011

o One-to-One

® Each user-level thread maps to kernel thread

®m Examples
e Windows NT/XP/2000
e Linux
e Solaris 9 and later

U

Operating System Concepts Essentials — 8" Edition 4.16 Silberschatz, Galvin and Gagne ©2011

s One-to-one Model

«—— LUser thread

;¢
® OO O wem

e

Operating System Concepts Essentials — 8" Edition 4.17 Silberschatz, Galvin and Gagne ©2011

4

& Many-to-Many Model

® Allows many user level threads to be mapped to many kernel threads

m Allows the operating system to create a sufficient number of kernel threads

m Solaris prior to version 9

® Windows NT/2000 with the ThreadFiber package

“

“;‘.{l.l.;l

= <5 “\
- s 2,
o
P

Operating System Concepts Essentials — 8th Edition 4.18 Silberschatz, Galvin and Gagne ©2011

P
't Many-to-Many Model

Ly

34— user thread

<«—— kernel thread

U

Operating System Concepts Essentials — 8™ Edition 4.19 Silberschatz, Galvin and Gagne ©2011

R o
v & Two-level Model

LS

® Similar to M:M, except that it allows a user thread to be bound to kernel thread

®m Examples

e IRIX
e HP-UX
e Tru64 UNIX

e Solaris 8 and earlier

U

Operating System Concepts Essentials — 8th Edition 4.20 Silberschatz, Galvin and Gagne ©2011

g Two-level Model

<«—— user thread

g7

Operating System Concepts Essentials — 8™ Edition 4.21 Silberschatz, Galvin and Gagne ©2011

r & Thread Libraries

e

m Thread library provides programmer with API for creating and managing threads

B Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

U

Operating System Concepts Essentials — 8 Edition 4.22 Silberschatz, Galvin and Gagne ©2011

V}/p—/ Pthreads

B May be provided either as user-level or kernel-level

®m A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

B API specifies behavior of the thread library, implementation is up to development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Operating System Concepts Essentials — 8" Edition 4.23 Silberschatz, Galvin and Gagne ©2011

P
o Pthreads Example

#include <=pthread.h>
finclude <=stdio.h:=

int sum; /* this data is shared by the thread{s) =/
void *runner(veid *para=); /* the thread =*/

int main(int argc, char =argv[])

{

pthread t tid; /* the thread identifier =/
pthread attr t attr; /* set of thread attributes =/

if {argc = 2) {

fprintf (stderr,"usage: a.out <integer wvalue>\n");
return —1;

if (atoifargv[i]) < 0) {

fprintf (stderr,"fd muat be »>= 0\n" ,atoifargw(i]));
return -—-1;

U

Operating System Concepts Essentials — 8th Edition 4.24 Silberschatz, Galvin and Gagne ©2011

55 Pthreads Example (Cont.)

/= gat the default attributes */

pthread attr-init(&attr);

/= create the thread =/

pthread create(ktid,kattr ,runner,argv[1]);
/= wait for the thread to exit =/

pthread join(tid , NULL);

priontf("auz = ¥d\o",sum) ;

}

/* The thread will begin comtrol in this functiom =*/
void *runner(void *param)

{
int i, upper = atoi{param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0) ;

Figure 4.8 Multithreaded C program usng the Pthreads AP

U

Silberschatz, Galvin and Gagne ©2011

Operating System Concepts Essentials — 8t Edition 4.25

“%7/Win32 APl Multithreaded C Program

#include =windows.h:>=

#include <stdic.hx>

DWORAD Surm; /* data is shared by the thread(s) =/
/= the thread runs in this separate function =/

DWOAD WINAPI Summation (LFVOID Param)

DWORD Upper = =*=(DWORD=*)Param;

for (DWORD i = 0; i <= Upper; i++)
Sum #= i;

return O;

}

int main(int argc, char =argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
f* perform some basic error checking */
if (argc != 2} |
fprintf{stderr,"An integer parameter is required\n");
reaturn -1;
%aram = atod(argv[1]);
if (Param < Q)
fprintf{stderr,"An integer »= 0 is required\n");
return -1;

}

U

Operating System Concepts Essentials — 8th Edition 4.26 Silberschatz, Galvin and Gagne ©2011

R

“$"Win32 API Multithreaded C Program (Cont.)

/¥ create the thread
ThreadHandle = CreateThread(
NULL, // default security attributes
0, ff default stack size
Summation, // thread functiom
&Para=m, // parameter to thread function
0, f/ default creation flags
EThreadId); // returns the thread identifier

if (ThreadHandle != NULL) {
F4 mow wait for the thread to fimnish
WaitForS8inglelbject (ThreadHandle , INFINITE} ;

F4 close the thread handle
CloseHandle{ThreadHandle) ;

printf("sum = ¥d\n",Sum);

Figure 4.10 Muftithreeded C program using the 'Win32 API.

U

Silberschatz, Galvin and Gagne ©2011

Operating System Concepts Essentials — 8t Edition 4.27

7 Java Threads

® Java threads are managed by the JVM

m Typically implemented using the threads model provided by underlying OS

® Java threads may be created by:

e Extending Thread class
e Implementing the Runnable interface

/}3%

“

Operating System Concepts Essentials — 8th Edition 4.28 Silberschatz, Galvin and Gagne ©2011

=i .
“$%7 Java Multithreaded Program

L .

class Sum
{

private int sum:

public int getSum{] {
Eturn sumy

}

public void setSum{int sum] |
this.sum = Sums
}
}

class Summation implements Runnable
private ink upper:
private Swum sumialuye:

public Summation(int upper, Sum sumValue) {
this_ upper = upper;
this. . sumaloe = sumifalioe:

}

public void run{) {
inTt sum = O;
far {int i = J; i «= wpper;
Sum 4 1
sumyalyue . sekSywmisom] s

}

(1]
-
-
-

Operating System Concepts Essentials — 8" Edition 4.29 Silberschatz, Galvin and Gagne ©2011

) ™ |
~4%7 Java Multithreaded Program (Cont.)

public class Driwer
{
public static void maini(String[] args) {
if jargs.length = 0] {
if {Integer parselnti{acge[d]] =« Q)
System.err.println(args [B6] + * must be == O.%)
mloe |
f/ create the object to be shared
Sum sumdbject = ew Sum{) ;
int upper = Integer. parseint {args[&])
Thread thrd = mew Thread (pew Summatioon jupper, sumdbjectk)] :
thrd.start{) ;
ery {
thrd. join{) :
Eymtem.oukt . printlin
1*The sum of "supper+® is "ssumibject .getSumi)) @
} catch {InterruptedException ie] { }

1

else
System.err println{"Usage: Summation <integer valves®); }

Figure 4.11 Java program for the summation of a non-negative integer.

A

Operating System Concepts Essentials — 8" Edition 4.30 Silberschatz, Galvin and Gagne ©2011

't Threading Issues

m Semantics of fork() and exec() system calls

m Thread cancellation of target thread
e Asynchronous or deferred

® Signal handling
e Synchronous and asynchronous

U

Operating System Concepts Essentials — 8th Edition 4.31 Silberschatz, Galvin and Gagne ©2011

ar«;;w Threading Issues (Cont.)

-

m Thread pools

Thread-specific data

m Create Facility needed for data private to thread
m Scheduler activations

Operating System Concepts Essentials — 8t Edition 4.32 Silberschatz, Galvin and Gagne ©2011

T Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?

Operating System Concepts Essentials — 8t Edition 4.33 Silberschatz, Galvin and Gagne ©2011

& Thread Cancellation

® Terminating a thread before it has finished

®m Two general approaches:
e Asynchronous cancellation terminates the target thread immediately.
e Deferred cancellation allows the target thread to periodically check if it should be cancelled.

“

“;‘.{l.l.;l

= <5 “\
- s 2,
o
P

Operating System Concepts Essentials — 8th Edition 4.34 Silberschatz, Galvin and Gagne ©2011

L Signal Handling

m Signals are used in UNIX systems to notify a process that a particular event has occurred.

m Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

m Options:
e Deliver the signal to the thread to which the signal applies
e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process
e Assign a specific thread to receive all signals for the process

Operating System Concepts Essentials — 8" Edition 4.35 Silberschatz, Galvin and Gagne ©2011

& Thread Pools

m Create a number of threads in a pool where they await work

® Advantages:
e Usually slightly faster to service a request with an existing thread than create a new thread
e Allows the number of threads in the application(s) to be bound to the size of the pool

=S v\: L
.':K \‘\
. N
o
A A%

Operating System Concepts Essentials — 8" Edition 4.36 Silberschatz, Galvin and Gagne ©2011

=

”

57 Thread Specific Data

e

® Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

g

Operating System Concepts Essentials — 8 Edition 4.37 Silberschatz, Galvin and Gagne ©2011

&/dmﬁ/ . .
> & Scheduler Activations

® Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

® Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

B This communication allows an application to maintain the correct number kernel threads

Operating System Concepts Essentials — 8" Edition 4.38 Silberschatz, Galvin and Gagne ©2011

L Lightweight Processes

3 — | jser thiresd

L\WPF | =— lightweight process

l

U.—mnﬂmm

Operating System Concepts Essentials — 8" Edition 4.39 Silberschatz, Galvin and Gagne ©2011

55 Operating System Examples

® Windows XP Threads

® Linux Thread

Operating System Concepts Essentials — 8t Edition 4.40 Silberschatz, Galvin and Gagne ©2011

=

“»”7 Windows XP Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
kernel TERB
stack
thread identifier
user
stack
thread-local
storage
kernel space user space
4.41

Operating System Concepts Essentials — 8t Edition

Silberschatz, Galvin and Gagne ©2011

o Windows XP Threads

B Implements the one-to-one mapping, kernel-level

m Each thread contains
e Athreadid
e Register set
e Separate user and kernel stacks
e Private data storage area

B The register set, stacks, and private storage area are known as the context of the threads

B The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)
e TEB (thread environment block)

~ A0
. - “'. -ll
A
- u.‘ J
=
“ A%

Operating System Concepts Essentials — 8th Edition 4.42 Silberschatz, Galvin and Gagne ©2011

5 Linux Threads

B Linux refers to them as tasks rather than threads

B Thread creation is done through clone() system call

m clone() allows a child task to share the address space of the parent task (process)

B struct task struct points to process data structures (shared or unique)

Operating System Concepts Essentials — 8" Edition 4.43 Silberschatz, Galvin and Gagne ©2011

> Linux Threads

m fork() and clone() system calls
® Doesn’t distinguish between process and thread
m Uses term task rather than thread
m clone() takes options to determine sharing on process create
B struct task struct points to process data structures (shared or unique)

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts Essentials — 8" Edition 4.44 Silberschatz, Galvin and Gagne ©2011

End of Chapter 4

Operating System Concepts Essentials — 8" Edition Silberschatz, Galvin and Gagne ©2011

	Chapter 4: Threads
	Chapter 4: Threads
	Objectives
	Motivation
	Single and Multithreaded Processes
	Benefits
	Multicore Programming
	Multithreaded Server Architecture
	Concurrent Execution on a �Single-core System
	Parallel Execution on a �Multicore System
	User Threads
	Kernel Threads
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Two-level Model
	Two-level Model
	Thread Libraries
	Pthreads
	Pthreads Example
	Pthreads Example (Cont.)
	Win32 API Multithreaded C Program
	Win32 API Multithreaded C Program (Cont.)
	Java Threads
	Java Multithreaded Program
	Java Multithreaded Program (Cont.)
	Threading Issues
	Threading Issues (Cont.)
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Thread Pools
	Thread Specific Data
	Scheduler Activations
	Lightweight Processes
	Operating System Examples
	Windows XP Threads Data Structures
	Windows XP Threads
	Linux Threads
	Linux Threads
	End of Chapter 4

