
Silberschatz, Galvin and Gagne ©2011Operating System Concepts essentials – 8th Edition

Chapter 9:
File-System Interface

9.2 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 9: File-System Interface
 File Concept
 Access Methods
 Disk and Directory Structure
 File-System Mounting
 File Sharing
 Protection

9.3 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Objectives
 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory
structures

 To explore file-system protection

9.4 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Concept
 Uniform logical view of information storage (no matter the medium)
 OS abstracts from physical properties into a logical storage unit, the file
 Files mapped onto physical devices, usually nonvolatile
 File is a collection of related information

 Smallest allotment of nameable storage
 Contiguous logical address space
 Types:

 Data
 numeric
 character
 binary

 Program
 May be free form or rigidly formed (structured)

9.5 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Structure
 None - sequence of words, bytes
 Simple record structure

 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate control characters
 Who decides:

 Operating system
 Program / programmer

9.6 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Attributes
 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security, and usage monitoring
 Information about files are kept in the directory structure, which is maintained on the disk

 Typically file’s name and identifier
 Identifier locates other file attributes

 Attributes may be > 1KB
 Directory structures may be > 1MB

9.7 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Operations
 File is an abstract data type
 Operations include the following (and usually more)
 Create – find space, add entry to directory
 Write – write data at current file position pointer location and update pointer
 Read – read file contents at pointer location, update pointer
 Reposition within file (seek) – change pointer location
 Delete – free space and remove entry from directory
 Truncate – delete data starting at pointer

9.8 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open Files
 Open(Fi) – allow process to access a file

 Returns a file handle for system call reference to the file
 Search the directory structure on disk for entry Fi, and move the content or cache some of entry to

memory
 Close(file handle) – end processes’ access to the file

 Move the content of entry Fi in memory to directory structure on disk

9.9 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open File Data Structures
 Usually a global table containing process-independent open file information

 Size
 Access dates
 Disk location of the file: cache of data access information
 File-open count: counter of number of times a file is open

 To allow removal of data from open-file table when last processes closes it

 Per-process open file table contains pertinent info, plus pointer to entry in global open file table
 Current file position pointer: pointer to next read/write location
 Access rights: per-process access mode information

 read, write, append

9.10 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open File Locking
 Provided by some operating systems and file systems

 Mediates access to a file
 shared
 exclusive

 Mandatory or advisory:
 Mandatory – access is denied depending on locks held and requested
 Advisory – processes can find status of locks and decide what to do

9.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Locking Example – Java API
import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
// get the channel for the file
FileChannel ch = raf.getChannel();
// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data . . . */
// release the lock
exclusiveLock.release();

9.12 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Locking Example –
Java API (Cont.)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),
SHARED);
/** Now read the data . . . */
// release the lock
sharedLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}finally {
if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)
sharedLock.release();

}
}

}

9.13 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Types
 Most operating systems recognize file types

 Filename extension
 I.e. resume.doc, server.java, readerthread.c

 Most support them
 Automatically open a type of file via a specific application (.doc)
 Only execute files of a given extension (.exe, .com)
 Run files of a given type via a scripting language (.bat)

 Can get more advanced
 If source code modified since executable compiled, if attempt made to execute, recompile and then execute

(TOPS-20)
 Mac OS encodes creating program’s name in file attributes

 Double clicking on file passes the file name to appropriate application
 Unix has magic number stored in file at first byte indicating file type

9.14 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Types – Name, Extension

9.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Structure
 Types can indicate internal file structure

 Some Oses enforce, some use as hints, some ignore
 But some most conform to OS-required format

 I.e. executable file
 Some support more formats

 DEC VMS supported 3
 The more that are supported, the more kernel code, etc
 Some enforce access methods
 Others allow arbitrary access

 Unix supports directory files, executable files
 But all files are strings of bytes

– Can open a directory file via a text editor
 Files stored in fixed-size disk blocks

 Can have internal fragmentation

9.16 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Methods

 Sequential Access – tape model of a file
read next
write next
reset
no read after last write

(rewrite)
 Direct Access – random access, relative access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

 Can accommodate structured data in file by mapping record number to block
number

 Oses usually support both kinds, sometimes require access method declaration
during create()

9.17 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Sequential-access File

9.18 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Simulation of Sequential Access on
Direct-access File

9.19 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Example of Index and Relative Files

9.20 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Disk Structure
 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or formatted with a file system
 Partitions also known as minidisks, slices
 Entity containing file system known as a volume
 Each volume containing file system also tracks that file system’s info in device directory or volume table

of contents or directory)
 Records information for all files on the volume

 As well as general-purpose file systems there are many special-purpose file systems, frequently all
within the same operating system or computer

9.21 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

A Typical File-system Organization

9.22 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File System Types
 Operating systems have multiple file system types

 One or more general-purpose (for storing user files)
 One or more special-purpose, i.e.

 tmpfs—“temporary” file system in volatile main memory, contents erased if the system reboots or
crashes

 objfs—a “virtual” file system (essentially an interface to the kernel that looks like a file system) that
gives debuggers access to kernel symbols

 ctfs— a virtual file system that maintains “contract” information to manage which processes start when
the system boots and must continue to run during operation

 lofs—a “loop back” file system that allows one file system to be accessed in place of another one
 procfs—a virtual file system that presents information on all processes as a file system

9.23 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Directory Overview
 Directory similar to symbol table translating file names to their directory entries

 Can be organized in many ways
 Organization needs to support operations including:

 Search for a file or multiple files
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

9.24 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Directory Organization

 Should have the features

 Efficiency – locating a file quickly

 Naming – convenient to users
 Two users can have same name for different files
 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …) or
arbitrarily

9.25 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Single-Level Directory

 A single directory for all users

Naming problem

Grouping problem

9.26 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Two-Level Directory
 Separate directory for each user

 Path name
 Can have the same file name for different users
 Efficient searching
 No grouping capability

9.27 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Added Directory Concepts
 Many variations, but some components essential
 Idea of current directory – default location for activities
 Now need a path specification

 If file is in current directory, just name it
 If in another directory, must specify by more detailed name
 Also need way to specify different filesystems
 MS-DOS gives letter to each volume, “\” separates directory name from file name – C:\userb\test
 VMS uses letter for volume and “[]” for directory specification – u:[sst.jdeck]login.com;1

 Note the support for versions via the trailing number
 Unix treats volume name as part of directory name - /u/pbg/test

 Many Oses search a set of paths for command names
 “ls” might search in current directory then in system directories

9.28 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories

9.29 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories (Cont.)
 Most common
 For example, allows users to can create directories within their directory
 Directory can then contain files or other directories
 Directory can be another file with defined formatting and attribute indicating its type
 Separate system calls to manage directory actions
 Absolute path is full specification of file local - /foo/bar/baz
 Relative path is location relative to current directory - ../baz
 Efficient searching

 Search path
 Grouping Capability
 Current directory (working directory)

 cd /spell/mail/prog
 type list

9.30 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories (Cont)

 Creating a new file is done in current directory

 Delete a file
rm <file-name>

 Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree
rooted by “mail”?

• Make users manually delete contents (and
subcontents) first (MS-DOS)

• Provide an option to delete all contents (Unix)

9.31 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Acyclic-Graph Directories

 Have shared subdirectories and files

9.32 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Acyclic-Graph Directories (Cont.)
 Adds ability to directly share directories between users

 But can now have multiple absolute paths to the same file

 Two different names (aliasing)

 If dict deletes list ⇒ dangling pointer
Solutions:
 Backpointers, so we can delete all pointers

Variable size records a problem
 Entry-hold-count solution

 New directory entry type
 Link – another name (pointer) to an existing file

 Indirect pointer
 Delete link separate from the files
 Hard and symbolic

 Resolve the link – follow pointer to locate the file

9.33 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

General Graph Directory

9.34 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

General Graph Directory (Cont.)
 How do we guarantee no cycles?

 Allow only links to file not subdirectories
 Garbage collection
 Every time a new link is added use a cycle detection algorithm to determine whether it is OK
 Or just bypass links during directory traversal

9.35 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File System Mounting
 A file system must be mounted before it can be accessed

 Privileged operation
 First check for valid file system on volume
 Kernel data structure to track mount points

 Some systems have separate designation for mount point (i.e. “c:”)

 Others integrate mounted file systems into existing directory naming system
 In separate space (i.e. /volumes) or within current name space

 A unmounted file system on /device/dsk (i.e., Fig. 11-11(b)) is mounted at a mount point

 What if the mount point already has contents?

 Configuration file or data structure to track default mounts
 Used at reboot or to reset mounts

 What if files are open on a device that is being unmounted?

9.36 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

(a) Existing (b) Unmounted Partition

9.37 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Mount Point

9.38 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing
 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing method

9.39 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Multiple Users
 User IDs identify users, allowing permissions and protections to be per-user

 Group IDs allow users to be in groups, permitting group access rights

9.40 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Remote File Systems
 Uses networking to allow file system access between systems

 Manually via programs like FTP
 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web

 Using FTP under the covers
 Client-server model allows clients to mount remote file systems from servers

 Server can serve multiple clients
 Client and user-on-client identification is insecure or complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol
 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active
Directory implement unified access to information needed for remote computing
 LDAP / Active Directory becoming industry standard -> Secure Single Sign-on
 IP addresses can be spoofed
 Protect remote access via firewalls

 Open file request to remote server first checked for client-to-server permissions, then user-id checked for
access permissions, then file handle returned
 Client process then uses file handle as it would for a local file

9.41 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Failure Modes
 Remote file systems add new failure modes, due to network failure, server failure

 Data or metadata loss or corruption

 Recovery from failure can involve state information about status of each remote request

 Stateless protocols such as NFS include all information in each request, allowing easy recovery but less
security
 But stateless protocols can lack features, so NFS V4 and CIFS are both state-ful

9.42 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Consistency Semantics

 Consistency semantics specify how multiple users are to access a shared file simultaneously
 Similar to Ch 7 process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for remote file systems)
 Andrew File System (AFS) implemented complex remote file sharing semantics
 Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the same open file
 Sharing file pointer to allow multiple users to read and write concurrently

 AFS has session semantics
 Writes only visible to sessions starting after the file is closed

 Easier to implement is immutable shared files
 Once file is declared “shared”, can’t be renamed or modified

9.43 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Protection
 File owner/creator should be able to manage controlled access:

 What can be done
 By whom
 But never forget physical security

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List
 Others can include renaming, copying, editing, etc
 System calls then check for valid rights before allowing operations

 Another reason for open()

 Many solutions proposed and implemented

9.44 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Lists and Groups
 Mode of access: read, write, execute
 Three classes of users

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

 Ask manager to create a group (unique name), say G, and add some users to the group.
 For a particular file (say game) or subdirectory, define an appropriate access.

owner group public

chmod 761 game
Attach a group to a file

chgrp G game

9.45 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Control
 More generally solved via access control lists

 For a given entity, keep list of user-ids allowed to access and what access methods
 Constructing such as list can be tedious and unrewarding
 Data structure must be stored somewhere

 Variable size

9.46 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Windows XP Access-Control
List Management

9.47 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

A Sample UNIX Directory Listing

Silberschatz, Galvin and Gagne ©2011Operating System Concepts essentials – 8th Edition

End of Chapter 9

	Chapter 9: �File-System Interface
	Chapter 9: File-System Interface
	Objectives
	File Concept
	File Structure
	File Attributes
	File Operations
	Open Files
	Open File Data Structures
	Open File Locking
	File Locking Example – Java API
	File Locking Example – �Java API (Cont.)
	File Types
	File Types – Name, Extension
	File Structure
	Access Methods
	Sequential-access File
	Simulation of Sequential Access on �Direct-access File
	Example of Index and Relative Files
	Disk Structure
	A Typical File-system Organization
	File System Types
	Directory Overview
	Directory Organization
	Single-Level Directory
	Two-Level Directory
	Added Directory Concepts
	Tree-Structured Directories
	Tree-Structured Directories (Cont.)
	Tree-Structured Directories (Cont)
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	General Graph Directory
	General Graph Directory (Cont.)
	File System Mounting
	(a) Existing (b) Unmounted Partition
	Mount Point
	File Sharing
	File Sharing – Multiple Users
	File Sharing – Remote File Systems
	File Sharing – Failure Modes
	File Sharing – Consistency Semantics
	Protection
	Access Lists and Groups
	Access Control
	Windows XP Access-Control �List Management
	A Sample UNIX Directory Listing
	End of Chapter 9

