
Silberschatz, Galvin and Gagne ©2011Operating System Concepts essentials – 8th Edition

Chapter 9:
File-System Interface

9.2 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Chapter 9: File-System Interface
 File Concept
 Access Methods
 Disk and Directory Structure
 File-System Mounting
 File Sharing
 Protection

9.3 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Objectives
 To explain the function of file systems

 To describe the interfaces to file systems

 To discuss file-system design tradeoffs, including access methods, file sharing, file locking, and directory
structures

 To explore file-system protection

9.4 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Concept
 Uniform logical view of information storage (no matter the medium)
 OS abstracts from physical properties into a logical storage unit, the file
 Files mapped onto physical devices, usually nonvolatile
 File is a collection of related information

 Smallest allotment of nameable storage
 Contiguous logical address space
 Types:

 Data
 numeric
 character
 binary

 Program
 May be free form or rigidly formed (structured)

9.5 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Structure
 None - sequence of words, bytes
 Simple record structure

 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting appropriate control characters
 Who decides:

 Operating system
 Program / programmer

9.6 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Attributes
 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security, and usage monitoring
 Information about files are kept in the directory structure, which is maintained on the disk

 Typically file’s name and identifier
 Identifier locates other file attributes

 Attributes may be > 1KB
 Directory structures may be > 1MB

9.7 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Operations
 File is an abstract data type
 Operations include the following (and usually more)
 Create – find space, add entry to directory
 Write – write data at current file position pointer location and update pointer
 Read – read file contents at pointer location, update pointer
 Reposition within file (seek) – change pointer location
 Delete – free space and remove entry from directory
 Truncate – delete data starting at pointer

9.8 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open Files
 Open(Fi) – allow process to access a file

 Returns a file handle for system call reference to the file
 Search the directory structure on disk for entry Fi, and move the content or cache some of entry to

memory
 Close(file handle) – end processes’ access to the file

 Move the content of entry Fi in memory to directory structure on disk

9.9 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open File Data Structures
 Usually a global table containing process-independent open file information

 Size
 Access dates
 Disk location of the file: cache of data access information
 File-open count: counter of number of times a file is open

 To allow removal of data from open-file table when last processes closes it

 Per-process open file table contains pertinent info, plus pointer to entry in global open file table
 Current file position pointer: pointer to next read/write location
 Access rights: per-process access mode information

 read, write, append

9.10 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Open File Locking
 Provided by some operating systems and file systems

 Mediates access to a file
 shared
 exclusive

 Mandatory or advisory:
 Mandatory – access is denied depending on locks held and requested
 Advisory – processes can find status of locks and decide what to do

9.11 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Locking Example – Java API
import java.io.*;
import java.nio.channels.*;
public class LockingExample {

public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;
FileLock exclusiveLock = null;
try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
// get the channel for the file
FileChannel ch = raf.getChannel();
// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data . . . */
// release the lock
exclusiveLock.release();

9.12 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Locking Example –
Java API (Cont.)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),
SHARED);
/** Now read the data . . . */
// release the lock
sharedLock.release();

} catch (java.io.IOException ioe) {
System.err.println(ioe);

}finally {
if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)
sharedLock.release();

}
}

}

9.13 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Types
 Most operating systems recognize file types

 Filename extension
 I.e. resume.doc, server.java, readerthread.c

 Most support them
 Automatically open a type of file via a specific application (.doc)
 Only execute files of a given extension (.exe, .com)
 Run files of a given type via a scripting language (.bat)

 Can get more advanced
 If source code modified since executable compiled, if attempt made to execute, recompile and then execute

(TOPS-20)
 Mac OS encodes creating program’s name in file attributes

 Double clicking on file passes the file name to appropriate application
 Unix has magic number stored in file at first byte indicating file type

9.14 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Types – Name, Extension

9.15 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Structure
 Types can indicate internal file structure

 Some Oses enforce, some use as hints, some ignore
 But some most conform to OS-required format

 I.e. executable file
 Some support more formats

 DEC VMS supported 3
 The more that are supported, the more kernel code, etc
 Some enforce access methods
 Others allow arbitrary access

 Unix supports directory files, executable files
 But all files are strings of bytes

– Can open a directory file via a text editor
 Files stored in fixed-size disk blocks

 Can have internal fragmentation

9.16 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Methods

 Sequential Access – tape model of a file
read next
write next
reset
no read after last write

(rewrite)
 Direct Access – random access, relative access

read n
write n
position to n

read next
write next

rewrite n
n = relative block number

 Can accommodate structured data in file by mapping record number to block
number

 Oses usually support both kinds, sometimes require access method declaration
during create()

9.17 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Sequential-access File

9.18 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Simulation of Sequential Access on
Direct-access File

9.19 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Example of Index and Relative Files

9.20 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Disk Structure
 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or formatted with a file system
 Partitions also known as minidisks, slices
 Entity containing file system known as a volume
 Each volume containing file system also tracks that file system’s info in device directory or volume table

of contents or directory)
 Records information for all files on the volume

 As well as general-purpose file systems there are many special-purpose file systems, frequently all
within the same operating system or computer

9.21 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

A Typical File-system Organization

9.22 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File System Types
 Operating systems have multiple file system types

 One or more general-purpose (for storing user files)
 One or more special-purpose, i.e.

 tmpfs—“temporary” file system in volatile main memory, contents erased if the system reboots or
crashes

 objfs—a “virtual” file system (essentially an interface to the kernel that looks like a file system) that
gives debuggers access to kernel symbols

 ctfs— a virtual file system that maintains “contract” information to manage which processes start when
the system boots and must continue to run during operation

 lofs—a “loop back” file system that allows one file system to be accessed in place of another one
 procfs—a virtual file system that presents information on all processes as a file system

9.23 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Directory Overview
 Directory similar to symbol table translating file names to their directory entries

 Can be organized in many ways
 Organization needs to support operations including:

 Search for a file or multiple files
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

9.24 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Directory Organization

 Should have the features

 Efficiency – locating a file quickly

 Naming – convenient to users
 Two users can have same name for different files
 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …) or
arbitrarily

9.25 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Single-Level Directory

 A single directory for all users

Naming problem

Grouping problem

9.26 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Two-Level Directory
 Separate directory for each user

 Path name
 Can have the same file name for different users
 Efficient searching
 No grouping capability

9.27 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Added Directory Concepts
 Many variations, but some components essential
 Idea of current directory – default location for activities
 Now need a path specification

 If file is in current directory, just name it
 If in another directory, must specify by more detailed name
 Also need way to specify different filesystems
 MS-DOS gives letter to each volume, “\” separates directory name from file name – C:\userb\test
 VMS uses letter for volume and “[]” for directory specification – u:[sst.jdeck]login.com;1

 Note the support for versions via the trailing number
 Unix treats volume name as part of directory name - /u/pbg/test

 Many Oses search a set of paths for command names
 “ls” might search in current directory then in system directories

9.28 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories

9.29 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories (Cont.)
 Most common
 For example, allows users to can create directories within their directory
 Directory can then contain files or other directories
 Directory can be another file with defined formatting and attribute indicating its type
 Separate system calls to manage directory actions
 Absolute path is full specification of file local - /foo/bar/baz
 Relative path is location relative to current directory - ../baz
 Efficient searching

 Search path
 Grouping Capability
 Current directory (working directory)

 cd /spell/mail/prog
 type list

9.30 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Tree-Structured Directories (Cont)

 Creating a new file is done in current directory

 Delete a file
rm <file-name>

 Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail
mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree
rooted by “mail”?

• Make users manually delete contents (and
subcontents) first (MS-DOS)

• Provide an option to delete all contents (Unix)

9.31 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Acyclic-Graph Directories

 Have shared subdirectories and files

9.32 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Acyclic-Graph Directories (Cont.)
 Adds ability to directly share directories between users

 But can now have multiple absolute paths to the same file

 Two different names (aliasing)

 If dict deletes list ⇒ dangling pointer
Solutions:
 Backpointers, so we can delete all pointers

Variable size records a problem
 Entry-hold-count solution

 New directory entry type
 Link – another name (pointer) to an existing file

 Indirect pointer
 Delete link separate from the files
 Hard and symbolic

 Resolve the link – follow pointer to locate the file

9.33 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

General Graph Directory

9.34 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

General Graph Directory (Cont.)
 How do we guarantee no cycles?

 Allow only links to file not subdirectories
 Garbage collection
 Every time a new link is added use a cycle detection algorithm to determine whether it is OK
 Or just bypass links during directory traversal

9.35 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File System Mounting
 A file system must be mounted before it can be accessed

 Privileged operation
 First check for valid file system on volume
 Kernel data structure to track mount points

 Some systems have separate designation for mount point (i.e. “c:”)

 Others integrate mounted file systems into existing directory naming system
 In separate space (i.e. /volumes) or within current name space

 A unmounted file system on /device/dsk (i.e., Fig. 11-11(b)) is mounted at a mount point

 What if the mount point already has contents?

 Configuration file or data structure to track default mounts
 Used at reboot or to reset mounts

 What if files are open on a device that is being unmounted?

9.36 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

(a) Existing (b) Unmounted Partition

9.37 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Mount Point

9.38 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing
 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing method

9.39 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Multiple Users
 User IDs identify users, allowing permissions and protections to be per-user

 Group IDs allow users to be in groups, permitting group access rights

9.40 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Remote File Systems
 Uses networking to allow file system access between systems

 Manually via programs like FTP
 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web

 Using FTP under the covers
 Client-server model allows clients to mount remote file systems from servers

 Server can serve multiple clients
 Client and user-on-client identification is insecure or complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol
 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active
Directory implement unified access to information needed for remote computing
 LDAP / Active Directory becoming industry standard -> Secure Single Sign-on
 IP addresses can be spoofed
 Protect remote access via firewalls

 Open file request to remote server first checked for client-to-server permissions, then user-id checked for
access permissions, then file handle returned
 Client process then uses file handle as it would for a local file

9.41 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Failure Modes
 Remote file systems add new failure modes, due to network failure, server failure

 Data or metadata loss or corruption

 Recovery from failure can involve state information about status of each remote request

 Stateless protocols such as NFS include all information in each request, allowing easy recovery but less
security
 But stateless protocols can lack features, so NFS V4 and CIFS are both state-ful

9.42 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

File Sharing – Consistency Semantics

 Consistency semantics specify how multiple users are to access a shared file simultaneously
 Similar to Ch 7 process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for remote file systems)
 Andrew File System (AFS) implemented complex remote file sharing semantics
 Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the same open file
 Sharing file pointer to allow multiple users to read and write concurrently

 AFS has session semantics
 Writes only visible to sessions starting after the file is closed

 Easier to implement is immutable shared files
 Once file is declared “shared”, can’t be renamed or modified

9.43 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Protection
 File owner/creator should be able to manage controlled access:

 What can be done
 By whom
 But never forget physical security

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List
 Others can include renaming, copying, editing, etc
 System calls then check for valid rights before allowing operations

 Another reason for open()

 Many solutions proposed and implemented

9.44 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Lists and Groups
 Mode of access: read, write, execute
 Three classes of users

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

 Ask manager to create a group (unique name), say G, and add some users to the group.
 For a particular file (say game) or subdirectory, define an appropriate access.

owner group public

chmod 761 game
Attach a group to a file

chgrp G game

9.45 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Access Control
 More generally solved via access control lists

 For a given entity, keep list of user-ids allowed to access and what access methods
 Constructing such as list can be tedious and unrewarding
 Data structure must be stored somewhere

 Variable size

9.46 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

Windows XP Access-Control
List Management

9.47 Silberschatz, Galvin and Gagne ©2011Operating System Concepts Essentials – 8th Edition

A Sample UNIX Directory Listing

Silberschatz, Galvin and Gagne ©2011Operating System Concepts essentials – 8th Edition

End of Chapter 9

	Chapter 9: �File-System Interface
	Chapter 9: File-System Interface
	Objectives
	File Concept
	File Structure
	File Attributes
	File Operations
	Open Files
	Open File Data Structures
	Open File Locking
	File Locking Example – Java API
	File Locking Example – �Java API (Cont.)
	File Types
	File Types – Name, Extension
	File Structure
	Access Methods
	Sequential-access File
	Simulation of Sequential Access on �Direct-access File
	Example of Index and Relative Files
	Disk Structure
	A Typical File-system Organization
	File System Types
	Directory Overview
	Directory Organization
	Single-Level Directory
	Two-Level Directory
	Added Directory Concepts
	Tree-Structured Directories
	Tree-Structured Directories (Cont.)
	Tree-Structured Directories (Cont)
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	General Graph Directory
	General Graph Directory (Cont.)
	File System Mounting
	(a) Existing (b) Unmounted Partition
	Mount Point
	File Sharing
	File Sharing – Multiple Users
	File Sharing – Remote File Systems
	File Sharing – Failure Modes
	File Sharing – Consistency Semantics
	Protection
	Access Lists and Groups
	Access Control
	Windows XP Access-Control �List Management
	A Sample UNIX Directory Listing
	End of Chapter 9

