Module 6: Process Synchronization
e

Operating System Concepts with Java — 8th Edition 6.1 Silberschatz, Galvin and Gagne ©2009

Module 6: Process Synchronization

Background

The Critical-Section Problem
Peterson’s Solution

Synchronization Hardware
Semaphores

Classic Problems of Synchronization
Monitors

Synchronization Examples

Atomic Transactions

Operating System Concepts with Java — 8th Edition 6.2

iy’

/
<4

Silberschatz, Galvin and Gagne ©2009

Objectives

B To introduce the critical-section problem, whose solutions can be used
to ensure the consistency of shared data

® To present both software and hardware solutions of the critical-section
problem

® To introduce the concept of an atomic transaction and describe
mechanisms to ensure atomicity

iy’

4

Operating System Concepts with Java — 8th Edition 6.3 Silberschatz, Galvin and Gagne ©2009

Background

m Concurrent access to shared data may result in data inconsistency

® Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

m Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer count that keeps track of the number of full buffers. Initially,
count is set to O. It is incremented by the producer after it produces a
new buffer and is decremented by the consumer after it consumes a
buffer.

o’

®

4

Operating System Concepts with Java — 8th Edition 6.4 Silberschatz, Galvin and Gagne ©2009

Producer

while (count == BUFFER.SIZE)
, // do nothing

// add an i1tem to the buffer
buffer[in] = 1tem;

in = (Iin + 1) % BUFFER.SIZE;
++count;

sy’

|

Operating System Concepts with Java — 8th Edition 6.5 Silberschatz, Galvin and Gagne ©2009

cConsumer

while (count == 0)
, // do nothing

// remove an i1tem from the
buffer i1tem = buffer[out];

out = (out + 1) % BUFFER.SIZE;
—--count;

sy’

y
Operating System Concepts with Java — 8th Edition 6.6 Silberschatz, Galvin and Gagne ©2009

Race Condition

B count++ could be implemented as

registerl = count
registerl = registerl + 1
count = registerl

B count-- could be implemented as

register2 = count
register2 = reqgister2 - 1
count = register2

m Consider this execution interleaving with “count = 5” initially:

TO: producer execute registerl = count {registerl =5}

T1: producer execute registerl = registerl + 1 {registerl = 6}
T2: consumer execute register2 = count {register2 = 5}

T3: consumer execute register?2 = register2 - 1 {register2 = 4}
T4: producer execute count = registerl {count=6}

T5: consumer execute count = registerZ2 {count = 4} |

|

Operating System Concepts with Java — 8th Edition 6.7 Silberschatz, Galvin and Gagne ©2009

Solution to Critical-Section Problem

1. Mutual Exclusion - If process P, is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress - If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting - A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted.

® Assume that each process executes at a nonzero speed
® No assumption concerning relative speed of the N processes

o’

®

Operating System Concepts with Java — 8th Edition 6.8 Silberschatz, Galvin and Gagne ©2009

Structure of a Typical Process

while (true) {

entry section

critical section

exit section

remainder section

iy’

Vg
~adi

Operating System Concepts with Java — 8th Edition 6.9 Silberschatz, Galvin and Gagne ©2009

Peterson’s Solution

B Two process solution

B Assume that the LOAD and STORE instructions are atomic:; that is,
cannot be interrupted.

® The two processes share two variables:
e intturn;
e boolean flag[2]

B The variable turn indicates whose turn it is to enter the critical section.

m The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = true implies that process P, is ready!

iy’

4

Operating System Concepts with Java — 8t Edition 6.10 Silberschatz, Galvin and Gagne ©2009

w

Algorithm for Process P,

while (true) {

critical section

remainder section

iy’

7

Operating System Concepts with Java — 8t Edition 6.11 Silberschatz, Galvin and Gagne ©2009

Solution to Critical-Section Problem
Using Locks

w

while (true) {

critical section

remainder section

by’

7
Operating System Concepts with Java — 8th Edition 6.12 Silberschatz, Galvin and Gagne ©2009

Synchronization Hardware

B Many systems provide hardware support for critical section code

® Uniprocessors — could disable interrupts
e Currently running code would execute without preemption
e Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable

B Modern machines provide special atomic hardware instructions
» Atomic = non-interruptable
e Either test memory word and set value
e Or swap contents of two memory words

iy’

4

Operating System Concepts with Java — 8t Edition 6.13 Silberschatz, Galvin and Gagne ©2009

Data Structure for Hardware Solutions

public class HardwareData

{

private booclean value = false;

public HardwareData(boolean value) {
this.value = value;

}

public boolean get() {
return value;

}

public void set(boolean newValue) {
value = newValue;

}

public boolean getAndSet(boolean newValue) {
boolean oldValue = this.get();
this.set (newValue) ;

return oldValue;

}

public void swap(HardwareData other) {
boolean temp = this.get();

this.set(other.get());
other.set (temp);

}

Operating System Concepts with Java — 8th Edition 6.14 Silberschatz, Galvin and Gagne ©2009

%{Solution using GetAndSet Instruction

// lock is shared by all threads
HardwareData lock = new HardwareData(false):

while (true) {
while (lock.getAndSet(true))
Thread.yield();

// eritical section
lock.set(false);
// remainder section

sy’

7
Operating System Concepts with Java — 8th Edition 6.15 Silberschatz, Galvin and Gagne ©2009

{ Solution using Swap Instruction

#f lock is shared by all threads
HardwareData lock = new HardwareDatal(false):

#f each thread has a local copy of key
HardwareData key = new HardwareData(true)

while (true) |
key.set(trua)

do |
lock. ewap (key) ;
!

while (key.get() == true);
f£f critical section

leck.set(false):
A/ remainder secticon

Operating System Concepts with Java — 8th Edition 6.16 Silberschatz, Galvin and Gagne ©2009

Semaphore

® Synchronization tool that does not require busy waiting
m Semaphore S — integer variable

m Two standard operations modify S: acquire() and release()
e Oiriginally called P() and V()

® Less complicated

m Can only be accessed via two indivisible (atomic) operations

acquire() {
while value <=0
; // no-op
value—-;

}

release() {
value++;

| sy’

|

Operating System Concepts with Java — 8t Edition 6.17 Silberschatz, Galvin and Gagne ©2009

" Semaphore as General Synchronization Tool

m Counting semaphore — integer value can range over an unrestricted
domain

m Binary semaphore — integer value can range only between 0
and 1; can be simpler to implement

e Also known as mutex locks

Semaphore sem = new Semaphore(i);
sem.acquire();

// critical section
gem.release();

// remainder section

Operating System Concepts with Java — 8th Edition 6.18 Silberschatz, Galvin and Gagne ©2009

@K Java Example Using Semaphores

public class Worker implements Runnable

{

private Semaphore sem;

public Worker (Semaphore sem) {
this.sem = sem;
}

public void run() {
while (true) {
sem.acquire();
criticalSection();
sem.release();
remainderSection();

7
Operating System Concepts with Java — 8th Edition 6.19 Silberschatz, Galvin and Gagne ©2009

Java Example Using Semaphores

public class SemaphoreFactory

{
public static void main(String args[]1) {
Semaphore sem = new Semaphore(l);
Thread[] bees = new Thread[5];
for (int 1 = 0; 1 < 5; i++)
bees[i] = new Thread(new Worker (sem));
for (int 1 = 0; 1 < 5; i++)
bees[i].start();
}
}

7
Operating System Concepts with Java — 8th Edition 6.20 Silberschatz, Galvin and Gagne ©2009

Semaphore Implementation

® Must guarantee that no two processes can execute acquire ()
and release () on the same semaphore at the same time

® Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the critical section.

e Could now have busy waiting in critical section
implementation

» But implementation code is short
» Little busy waiting if critical section rarely occupied

® Note that applications may spend lots of time in critical sections
and therefore this is not a good solution.

d

4

Operating System Concepts with Java — 8t Edition 6.21 Silberschatz, Galvin and Gagne ©2009

Semaphore Implementation with
no Busy waiting

m With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:
e value (of type integer)
e pointer to next record in the list

® Two operations:
e Dblock — place the process invoking the operation on the
appropriate waiting queue.
e wakeup — remove one of processes in the waiting queue and
place it in the ready queue.

d

|

Operating System Concepts with Java — 8t Edition 6.22 Silberschatz, Galvin and Gagne ©2009

Semaphore Implementation with
no Busy waiting (Cont.)

® |Implementation of acquire():

acquire(){
value--;
if (value < 0) {
add this process to list
block;

}
}

® |Implementation of release():

release(){
value++;
if (value <= 0) {
remove a process P from list
wakeup (P) ;

}
}

4
i

Operating System Concepts with Java — 8th Edition 6.23 Silberschatz, Galvin and Gagne ©2009

Deadlock and Starvation

m Deadlock — two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes

m LetS and Q be two semaphores initialized to 1

By Py
S.acquire(); Q.acquire();
Q.acquire(); S.acquire();
S.release(); Q.release();
.release(); S.release();

m Starvation —indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

sy’

|

Operating System Concepts with Java — 8t Edition 6.24 Silberschatz, Galvin and Gagne ©2009

- Classical Problems of Synchronization

B Bounded-Buffer Problem
B Readers and Writers Problem

® Dining-Philosophers Problem

y’

Vg
~adi

Operating System Concepts with Java — 8th Edition 6.25 Silberschatz, Galvin and Gagne ©2009

Bounded-Buffer Problem

® N buffers, each can hold one item
® Semaphore mutex initialized to the value 1
m Semaphore full initialized to the value O

® Semaphore empty initialized to the value N

Operating System Concepts with Java — 8th Edition 6.26

Silberschatz, Galvin and Gagne ©2009

Bounded-Buffer Problem

public claza BoundedBuffer<E> implementa Buffer<E>
{ private static fimal int BUFFER SIZE = §;
private E[] buffer;
private int in, out;
private Semaphore mutex;
private Semaphore empty;
private Semaphore full;

public BoundedBuffer() |
/f buffer is initially empty
in = 0;
cut = 0]
mutex = new Semaphore(l);
empty = new Semaphore(BUFFER-SIZE);

full = new Senaphﬂ-re[t:':l',

buffer = (E[])} new Object [BUFFER_SIZE];

:-

public void insert(E item) |

#¢ Figure 6.10
!

public E remove() |
#/¢ Figure 6.11
!

Operating System Concepts with Java — 8th Edition 6.27 Silberschatz, Galvin and Gagne ©2009

Bounded-Buffer insert()

! Producers call this method
public void insert(E item) |

BRpLY.acquire() ;
mitex.acquirel] ;

J/ add amn item to the buffer
buffer[in] = item:

in = {in + 1} % BUFFER_SIZE:
mitex.releasal):

full.release();

Figure 6.10 The insert () method.

Operating System Concepts with Java — 8th Edition 6.28 Silberschatz, Galvin and Gagne ©2009

Bounded-buffer remove()

// Consumers call this method
public E removell} 4
E item;

full.acquire{];
mitex.acquire();

¢ remove en item from the buffer
item = buffer[out];

out = (out + 1) 5% BUFFER_SIZE:

mutex.releasa();
empty.release();

return item:

Operating System Concepts with Java — 8th Edition 6.29 Silberschatz, Galvin and Gagne ©2009

Bounded-buffer producer

:I.III.]:IG-I't Java atil. late;

public clasa Preducer implements Runnable

{

private Buffer<Date> buffer;

public Producer (Buffer<Date> buffer) |
thia . buffer = buffer;

}

public woid run() |
Date message;

while (true) {
// map for awhile
SleepUtilities.nap();

// produce an item & enter it imto the buffer

megsage = new Datael);
buffer.insert(message) ;

Operating System Concepts with Java — 8th Edition 6.30 Silberschatz, Galvin and Gagne ©2009

Bounded-buffer consumer

import java.util.Date;

public clasz Consumer implementa Runnable

{

private Buffer<Date> buffer;

public Censumer (Buffer<Date> buffer) |
thia.buffer = buffer;

}

public weid run(} |
Date message;

while {true) {
/f nap for awhile
Sleeplitilitiea.nap();

/4 consume an item from the buffer
message = (Date)buffer.remove();

Operating System Concepts with Java — 8th Edition 6.31 Silberschatz, Galvin and Gagne ©2009

Bounded-buffer factory

l]l]:l{.'l]'.'t Java. util.late;

public class Factory
{
public etatic void main(String arga[]) |
Buffer<Cate> buffer = new BoundedBuffer<Date>(}:

/f Create the producer and consumer threads
Thread producer = new Thread(new Producer(bmffer)];
Thread conzumer = new Threadi{new Consumer(buffer));

producer.atart(});
consumer.starti};

Operating System Concepts with Java — 8th Edition 6.32 Silberschatz, Galvin and Gagne ©2009

Readers-Writers Problem

®m A data set is shared among a number of concurrent processes

e Readers — only read the data set; they do not perform any
updates

e Writers — can both read and write

® Problem — allow multiple readers to read at the same time. Only one
single writer can access the shared data at the same time

m Shared Data
e Data set
e Semaphore mutex initialized to 1
e Semaphore db initialized to 1
e Integer readerCount initialized to O

iy’

4

Operating System Concepts with Java — 8t Edition 6.33 Silberschatz, Galvin and Gagne ©2009

Readers-Writers Problem

B [nterface for read-write locks

public interface ReadWriteLock

{

public
public
public
public

vold acquireReadLock();

vold acquireWriteLlock();

void releasesReadLock()

void releaseWriteLock():

Operating System Concepts with Java — 8th Edition 6.34

Silberschatz, Galvin and Gagne ©2009

Readers-Writers Problem (Cont.)

B The structure of a writer

Fublic class Writer implements Hunnakle

{

private ReadWriteLock db;

public Writer(ReadWriteLeock db) |
thie.db = db;
!

public veid run{} |
while (true) |{
// nap for awhile
Slespltilities.nap();
db.acquireWriteLlock();

J/ now write to write toe the databasze
Sleepltilities.nap(}:

db.releaseWritelock{) :

Operating System Concepts with Java — 8th Edition 6.35 Silberschatz, Galvin and Gagne ©2009

{ Readers-Writers Problem (Cont.)

B The structure of a reader

public claas Header implementa REunnahble
{

private ReadWritelock dbk:

public Reader {(ReadWriteLock db) |
thiz.db = db;

'

public woid run(}) {
while (true) |
// nap for awhile
SleepUtilities.napl);
db.acquireReadLock() ;

/¢ nmow read from the database
Sleepltilitiea.nap();

db.releaseReadlock():

Operating System Concepts with Java — 8th Edition 6.36 Silberschatz, Galvin and Gagne ©2009

Readers-Writers Problem (Cont.)

B The database

]:lL'I.I:IJ.:I.C claga Uatabasze].I]]'F-J.EI]]EIII-E- ReadWritelocl

{

private int readerfount;
private Semaphore mutex;
private Semaphore db;

public Database() {
readerCount = (;
mutex = new Semaphore(l);
db = new Semaphore(l};

}

public void acquireReadlock() |
/f Figure 6.19
i

public void releaaeReadlock() {
/f Figure 6.19
;

public void acquireWriteLock() |
/f Figure 6.20
}

public void releaseWriteLock() |
/f Figure 6.20
I

Operating System Concepts with Java — 8th Edition 6.37 Silberschatz, Galvin and Gagne ©2009

Readers-Writers Problem (Cont.)

B Reader methods

public void acquireReadLeck() |
mutex.acquire() ;

FES
* The firat reader indicates that
* the databasze iz being read.
*f
++readerCount ;
if {readearfount == 1)
db.acquire();

mitex.releasal):

}

public void releaseReadLock() |
mutex.acquire();

FESS
* The laszst reader indicatesz that
* the databasze iz no longer being read.
*J
--readerCount ;
if {readearfount == 0]
db.releagal):

mitex.releasal):

Operating System Concepts with Java — 8th Edition 6.38 Silberschatz, Galvin and Gagne ©2009

{ Readers-Writers Problem (Cont.)

®m Writer methods

public woid acquireWriteLlock() |
db. acquire();

}

public woid releaseWriteLock() |
db.releasal);

}

by’

)

4
Operating System Concepts with Java — 8th Edition 6.39 Silberschatz, Galvin and Gagne ©2009

-~ Dining-Philosophers Problem

® Shared data
e Bowl of rice (data set)

e Semaphore chopStick [5] initialized to 1)

Vg
~adi

Operating System Concepts with Java — 8th Edition 6.40 Silberschatz, Galvin and Gagne ©2009

{Dining-Philosophers Problem (Cont.)

® The structure of Philosopher i:

while (true} |

!/ get left chopatick
chopStick(i] .acquire();
Foget rJ%ht chopetick
chop3tick

eating(},
/f return left chopatick

chop8tick[i] .release();
// return right chopatick

chop8tick([(i + 1) % 5].release(};

thinking{);

Operating System Concepts with Java — 8th Edition 6.41

(i + 1) % 5]).acquire();

Silberschatz, Galvin and Gagne ©2009

Problems with Semaphores

m Correct use of semaphore operations:

e Correct = mutex.acquire() mutex.release()
e Incorrect = mutex.acquire () or mutex.release() (or both)

e Omitting either mutex.acquire() or mutex.release()

iy’

|

Operating System Concepts with Java — 8t Edition 6.42 Silberschatz, Galvin and Gagne ©2009

Monitors

® A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

® Only one process may be active within the monitor at a time

|

Operating System Concepts with Java — 8t Edition 6.43 Silberschatz, Galvin and Gagne ©2009

Syntax of a Monitor

Mon1tor RORHGr name

{

// shared wariable declarations

procedure P1 (. . .] {
o

procedure P2 (. . .] {
o

'F-IEI-EE-d1:1IE- Pn (. . .1 {

}

initialization code { . . . } {

}

Operating System Concepts with Java — 8th Edition 6.44 Silberschatz, Galvin and Gagne ©2009

Schematic view of a Monitor

entry queue

shared data

"

operations

initialization
code

y’

Py
~adi

Operating System Concepts with Java — 8th Edition 6.45 Silberschatz, Galvin and Gagne ©2009

Condition Variables

m Condition X, y;

® Two operations on a condition variable:
e X.wait () —a process that invokes the operation is
suspended
e x.signal () — resumes one of processes (if any) that
invoked x.wait ()

iy’

/
<4

Operating System Concepts with Java — 8th Edition 6.46 Silberschatz, Galvin and Gagne ©2009

Monitor with Condition Variables

entry queue

shared data

XLk
y -

queues associated with
X, y conditions

~*

operations

initialization
code

y’

Vg
~adi

Operating System Concepts with Java — 8th Edition 6.47 Silberschatz, Galvin and Gagne ©2009

Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum State {'I'HIH'KIHG, HUNGRY, EATING};
State[] states = new State[5];
Condition[] self = new Condition[5];

public DiningPhilosophers {
for (int i = 0; 1 < 5; i++)
state[i] = State.THINKING;

}

public void takeForks(int i) {
state[i] = State.HUNGRY;
test(i);
if (state[i] !'= State.EATING)
self [i] .wait;

}

public void returnForks(int i) {
state[i] = State.THINKING;
// test left and right neighbors
test((1i + 4) % 8);
test((i + 1) % B);

}

private void test(int i) {
if ((state[(di + 4) ¥ 5] != State.EATING) &&
(state[i] == State.HUNGRY) &&
(state[(i + 1) % 5] !'= State.EATING)) {
state[i] = State.EATING;
self[i] .signal;

Operating System Concepts with Java — 8th Edition 6.48 Silberschatz, Galvin and Gagne ©2009

%{Solution to Dining Philosophers (Cont.)

m Each philosopher | invokes the operations takeForks(i) and
returnForks(i) in the following sequence:

dp.takeForks (i)
EAT

dp.returnForks (i)

y’

<

Operating System Concepts with Java — 8th Edition 6.49 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

®m Java provides synchronization at the language-level.

m Each Java object has an associated lock.

m This lock is acquired by invoking a synchronized method.

m This lock is released when exiting the synchronized method.

B Threads waiting to acquire the object lock are placed in the entry set
for the object lock.

d

|

Operating System Concepts with Java — 8t Edition 6.50 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

B Each object has an associated entry set.

acquire lock

S 5 15

entry set

iy’

/
<4

Operating System Concepts with Java — 8th Edition 6.51 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

B Synchronized insert() and remove() methods — Incorrect!

Jf Producers call this method
public synchronized void insert(E item) |
while (count == BUFFER_SIZE)
Thread.yield(};

buffer[in] = item:
in = {in + 1)} % BUFFER.SIZE:
++count:

// Consumers call this method
public synchronized E removel) 4
E itenm;

while [(count == 0)
Thread.yield();

item = buffer[out]:
cut = (out + 1) ¥ BUFFER SIZE:

——COount;

return item:

7
Operating System Concepts with Java — 8th Edition 6.52 Silberschatz, Galvin and Gagne ©2009

Java Synchronization wait/notify()

® When a thread invokes wait():

1. The thread releases the object lock;
2. The state of the thread is set to Blocked,;
3. The thread is placed in the wait set for the object.

® When a thread invokes notify():

1. An arbitrary thread T from the wait set is selected;
2. T is moved from the wait to the entry set;
3. The state of T is set to Runnable.

d

|

Operating System Concepts with Java — 8t Edition 6.53 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

B Entry and wait sets

walit

s LS

wait set

acquire lock

SISt

entry set

iy’

|

Operating System Concepts with Java — 8t Edition 6.54 Silberschatz, Galvin and Gagne ©2009

- Java Synchronization — wait/notify

B Synchronized insert() method — Correct!

/{ Producers call this method
public synchronized void insert(E item) {
while (count == BUFFER SIZE) {

try {
wait():

}

catch (InterruptedException e) { }

}

buffer [in] = item;
in = (in + 1) ¥ BUFFER_SIZE;

++count ;

notify();

y’

1“’
<4

Operating System Concepts with Java — 8th Edition 6.55 Silberschatz, Galvin and Gagne ©2009

- Java Synchronization — wait/notify

B Synchronized remove() method — Correct!

// Consumers call this method
public synchronized E remove() {

E item;
while (count == Q) {
try {
wait():
}
catch (InterruptedException e) { }

}

item = buffer[out] :
out = (out + 1)) BUFFERSIZE;

-—count;

notify();

return item;

y’

1“’
<4

Operating System Concepts with Java — 8th Edition 6.56 Silberschatz, Galvin and Gagne ©2009

%ava Synchronization - Bounded Buffer

public clasa BoundedBuffer<E> implements Buffer<E>

{

Operating System Concepts with Java — 8th Edition

private atatic final int BUFFER.SIZE = 5;

private int count, in, out;
private E[] buffer;

public BoundedBuffer() |{

/f buffer ia initially empty
count = 0;

in = Q;

out = 0;

buffer = (E[])} new Dbject [BUFFER_SIZE] ;

public synchronized void insert(E item) |

ff Figure 6.29

public synchronized E remove() |

ff Figure 6.29

6.57

Silberschatz, Galvin and Gagne ©2009

Java Synchronization

® The call to notify() selects an aribitrary thread from the wait set. It
IS possible the selected thread is in fact not waiting upon the
condition for which it was notified.

m The call notifyAll() selects all threads in the wait set and moves
them to the entry set.

® |n general, notifyAll() is a more conservative strategy than
notify().

iy’

4

Operating System Concepts with Java — 8t Edition 6.58 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

T
& myHumber iz the numker of the thread
* that wighez to do some work

*f
public eynchronized void doWerk(int myNumber) |
while (turn != mylumber) {
try |
wait{);
!
catch (InterruptedException a) { }
!

4 Do some work for awhile .

S
Finighed working. Now indicate teo the
next waiting thread that it is their
turn to do some wWork.
*/
turn = (turn + 1) % 5;

notify() may
notify(); not notify the

} correct thread!

Operating System Concepts with Java — 8th Edition 6.59

Silberschatz, Galvin and Gagne ©2009

Java Synchronization - Readers-Writers

public clazs Databaszse implementsz ReadWritelock

i

private int readerCount;
private boolean dbWriting;

public Database() |
readerCount = 0
dbWriting = false;

}

public synchronized woid acquireReadLock() |
// Figure 6.34
l'

public aynchronized woid releaseReadLock() |
// Figure 6.34
i

public synchronized woid acquireWriteLock() |
/¢ Figure 6.35
}

public synchronized void releaseWritelock() |
// Figure 6.35
}

Operating System Concepts with Java — 8th Edition 6.60 Silberschatz, Galvin and Gagne ©2009

%ava Synchronization - Readers-Writers

B Methods called by readers

public synchronized void acquirefeadLock{)} 4
while (dbWriting == true) |

try |
wait{):

catch{InterruptedException &) { }

I
++readerCount ;

t

public synchronized void releaseleadLock{) 4
—--readerCount ;

FES
* The last reader indicates that
* the database iz no longer being read.
*/
if (readerCount == {0}
notify();
t
Operating System Concepts with Java — 8th Edition 6.61

Silberschatz, Galvin and Gagne ©2009

Java Synchronization - Readers-Writers

B Methods called by writers

public aynchromized woid acquireWriteLock() |
while {(readerCount > 0 || dblWriting == true) |

try |
wait ()
}

catch(InterruptedException &) { }

'
Jex

Once there are no readers or a writer,

indicate that the database is being written.
£/

dbWriting = true;

h

public aynchromnized woid releaseWriteLock() |
dbWriting = false;

notifyAll();

Operating System Concepts with Java — 8th Edition 6.62 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

B Rather than synchronizing an entire method, Block
synchronization allows blocks of code to be declared as
synchronized

Object mutexLock = new Object();

public void someMethod() {
nonCriticalSection();

synchronized (mutexLock) {
criticalSection();
}

remainderSection();

iy’

|

Operating System Concepts with Java — 8t Edition 6.63 Silberschatz, Galvin and Gagne ©2009

Java Synchronization

B Block synchronization using wait()/notify()

Object mutexLock = new Object();

synchronized (mutexLock)

try {
mutexLock.wait();
}

catch (InterruptedException ie) { }

}

synchronized (mutexLock) {
mutexLock.notify();
}

iy’

<

Operating System Concepts with Java — 8th Edition 6.64 Silberschatz, Galvin and Gagne ©2009

Concurrency Features in Java 5

® Prior to Java 5, the only concurrency features in Java
were Using synchronized/wait/notify.

® Beginning with Java 5, new features were added to the
API:

e Reentrant Locks
e Semaphores
e Condition Variables

iy’

|

Operating System Concepts with Java — 8t Edition 6.65 Silberschatz, Galvin and Gagne ©2009

Concurrency Features in Java 5

B Reentrant Locks

Lock key = new ReentrantLock();

key.lock();

try {
// critical section

finally {
key.unlock();
Operating System Concepts with Java — 8th Edition 6.66

Silberschatz, Galvin and Gagne ©2009

Concurrency Features in Java 5

B Semaphores

Semaphore sem = new Semaphore(l);

try {
sem.acquire() ;

// critical section
}
catch (InterruptedException ie) { }
finally {

sem.release() ;
}

sy’

Operating System Concepts with Java — 8th Edition 6.67 Silberschatz, Galvin and Gagne ©2009

Concurrency Features in Java 5

B A condition variable is created by first creating a
ReentrantLock and invoking its newCondition() method:

Lock key = new HeentrantLock();
Condition condVar = key.newCondition();

B Once this is done, it is possible to invoke the
await() and signal() methods

iy’

/
<4

Operating System Concepts with Java — 8t Edition 6.68 Silberschatz, Galvin and Gagne ©2009

Concurrency Features in Java 5

B doWork() method with condition variables

e,
*# myNumber is the number of the thread
*# that wishes to do some work
*/
public void doWork(int myNumber) {
lock.lock();

try {
LS

#= If it's not my turn, then wait
until I'm signaled
*/
if (myNumber != turn)
condVars [myNumber] .await();

S/ Do some work for awhile .

FET
Finished working. Now indicate to the
next waiting thread that it is their

= turn to do some work.
*/

turn = (turn + 1) % 5;
condVars [turn] .signal();

}

catch (InterruptedException ie) { }

finally { a
lock . unlock();

t)
} d

Operating System Concepts with Java — 8th Edition 6.69 Silberschatz, Galvin and Gagne ©2009

Synchronization Examples

Solaris
Windows XP
Linux
Pthreads

sy’

Operating System Concepts with Java — 8th Edition 6.70 Silberschatz, Galvin and Gagne ©2009

Solaris Synchronization

® Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

B Uses adaptive mutexes for efficiency when protecting data from
short code segments

m Uses condition variables and readers-writers locks when longer
sections of code need access to data

m Uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or reader-writer lock

d

|

Operating System Concepts with Java — 8t Edition 6.71 Silberschatz, Galvin and Gagne ©2009

Windows XP Synchronization

B Uses interrupt masks to protect access to global resources on
uniprocessor systems

m Uses spinlocks on multiprocessor systems

m Also provides dispatcher objects which may act as either mutexes
and semaphores

m Dispatcher objects may also provide events
e An event acts much like a condition variable

sy’

|

Operating System Concepts with Java — 8t Edition 6.72 Silberschatz, Galvin and Gagne ©2009

Linux Synchronization

B Linux;

e Prior to kernel Version 2.6, disables interrupts to implement short
critical sections

e Version 2.6 and later, fully preemptive

® Linux provides:
e semaphores
e spin locks

iy’

/
<4

Operating System Concepts with Java — 8th Edition 6.73 Silberschatz, Galvin and Gagne ©2009

Pthreads Synchronization

m Pthreads APl is OS-independent

®m |t provides:
e mutex locks
e condition variables

® Non-portable extensions include:
e read-write locks
e spin locks

Operating System Concepts with Java — 8th Edition 6.74 Silberschatz, Galvin and Gagne ©2009

Atomic Transactions

System Model
Log-based Recovery
Checkpoints

Concurrent Atomic Transactions

y’

Vg
~adi

Operating System Concepts with Java — 8th Edition 6.75 Silberschatz, Galvin and Gagne ©2009

Transactional Memory

® Memory transaction is a series of read-write operations that are
atomic.

B Wereplace update O {

acquire();
/* modify shared data =*/
release():

b

m \With update () {
atomic {

/* modify shared data */
1

b

® The atomic{S} statement ensures the statements in S execute as a
transaction.

|

Operating System Concepts with Java — 8t Edition 6.76 Silberschatz, Galvin and Gagne ©2009

System Model

m Assures that operations happen as a single logical unit of work, in
its entirety, or not at all

B Related to field of database systems

m Challenge is assuring atomicity despite computer system failures

® Transaction - collection of instructions or operations that performs
single logical function

Here we are concerned with changes to stable storage — disk
Transaction is series of read and write operations

Terminated by commit (transaction successful) or abort
(transaction failed) operation

Aborted transaction must be rolled back to undo any changes it

performed

®

4

Operating System Concepts with Java — 8t Edition 6.77 Silberschatz, Galvin and Gagne ©2009

Types of Storage Media

m Volatile storage — information stored here does not survive system
crashes

e Example: main memory, cache

® Nonvolatile storage — Information usually survives crashes
e Example: disk and tape

m Stable storage — Information never lost

e Not actually possible, so approximated via replication or RAID to
devices with independent failure modes

Goal is to assure transaction atomicity where failures cause loss of
information on volatile storage

d

4

Operating System Concepts with Java — 8t Edition 6.78 Silberschatz, Galvin and Gagne ©2009

Log-Based Recovery

® Record to stable storage information about all modifications by a
transaction

® Most common is write-ahead logging

e Log on stable storage, each log record describes single transaction
write operation, including

» Transaction name

» Data item name

» Old value

» New value
e <T, starts> written to log when transaction T, starts
e <T,commits> written when T, commits

® Log entry must reach stable storage before operation on data occurs

d

4

Operating System Concepts with Java — 8t Edition 6.79 Silberschatz, Galvin and Gagne ©2009

Log-Based Recovery Algorithm

B Using the log, system can handle any volatile memory errors
e Undo(T;) restores value of all data updated by T,
e Redo(T,) sets values of all data in transaction T, to new values

B Undo(T,) and redo(T;) must be idempotent
e Multiple executions must have the same result as one execution

m [f system fails, restore state of all updated data via log
e If log contains <T; starts> without <T, commits>, undo(T))
e If log contains <T, starts> and <T, commits>, redo(T))

iy’

4

Operating System Concepts with Java — 8t Edition 6.80 Silberschatz, Galvin and Gagne ©2009

Checkpoints

® Log could become long, and recovery could take long
m Checkpoints shorten log and recovery time.

®m Checkpoint scheme:
1. Output all log records currently in volatile storage to stable storage
2. Output all modified data from volatile to stable storage
3. Output a log record <checkpoint> to the log on stable storage

® Now recovery only includes Ti, such that Ti started executing before
the most recent checkpoint, and all transactions after Ti All other
transactions already on stable storage

o

®

Operating System Concepts with Java — 8t Edition 6.81 Silberschatz, Galvin and Gagne ©2009

Concurrent Transactions

® Must be equivalent to serial execution — serializability

® Could perform all transactions in critical section
e Inefficient, too restrictive

m Concurrency-control algorithms provide serializability

Operating System Concepts with Java — 8th Edition 6.82 Silberschatz, Galvin and Gagne ©2009

Serializability

B Consider two data items A and B

m Consider Transactions T,and T,

m Execute T,, T, atomically
® Execution sequence called schedule
m Atomically executed transaction order called serial schedule

m For N transactions, there are N! valid serial schedules

|

Operating System Concepts with Java — 8t Edition 6.83 Silberschatz, Galvin and Gagne ©2009

Schedule 1:

o then T,

Ty T

read(A)

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

Silberschatz, Gal

iy’

<

vin and Gagne ©2009

Nonserial Schedule

m Nonserial schedule allows overlapped execute
e Resulting execution not necessarily incorrect

= Consider schedule S, operations O;, O,
e Conflict if access same data item, with at least one write

= If O,, O, consecutive and operations of different transactions & O, and
O, don't conflict

e Then S’ with swapped order O; O, equivalent to S

B If S can become S’ via swapping nonconflicting operations
e Sis conflict serializable

d

|

Operating System Concepts with Java — 8t Edition 6.85 Silberschatz, Galvin and Gagne ©2009

#& Schedule 2: Concurrent Serializable Schedule

T T,
read(A)
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Operating System Concepts with Java — 8th Edition

6.86

iy’

<

Silberschatz, Galvin and Gagne ©2009

Locking Protocol

® Ensure serializability by associating lock with each data item
e Follow locking protocol for access control

m Locks

e Shared —T, has shared-mode lock (S) on item Q, T, can read Q
but not write Q

e Exclusive —Ti has exclusive-mode lock (X) on Q, T, can read and
write Q

B Require every transaction on item Q acquire appropriate lock

m If lock already held, new request may have to wait
e Similar to readers-writers algorithm

d

4

Operating System Concepts with Java — 8t Edition 6.87 Silberschatz, Galvin and Gagne ©2009

Two-phase Locking Protocol

m Generally ensures conflict serializability

m Each transaction issues lock and unlock requests in two phases
e Growing — obtaining locks
e Shrinking — releasing locks

® Does not prevent deadlock

iy’

/
<4

Operating System Concepts with Java — 8t Edition 6.88 Silberschatz, Galvin and Gagne ©2009

Timestamp-based Protocols

m Select order among transactions in advance — timestamp-ordering

B Transaction T,associated with timestamp TS(T,) before T, starts
e TS(T) <TS(T) if Ti entered system before T,

e TS can be generated from system clock or as logical counter
incremented at each entry of transaction

® Timestamps determine serializability order

o If TS(T) < TS(T), system must ensure produced schedule
equivalent to serial schedule where T, appears before T,

iy’

4

Operating System Concepts with Java — 8t Edition 6.89 Silberschatz, Galvin and Gagne ©2009

Timestamp-based Protocol Implementation

m Data item Q gets two timestamps

e W-timestamp(Q) — largest timestamp of any transaction that
executed write(Q) successfully

e R-timestamp(Q) — largest timestamp of successful read(Q)
e Updated whenever read(Q) or write(Q) executed

m Timestamp-ordering protocol assures any conflicting read and write
executed in timestamp order

® Suppose Ti executes read(Q)

o If TS(T)) < W-timestamp(Q), Ti needs to read value of Q that was
already overwritten

» read operation rejected and T, rolled back
o If TS(T;) 2 W-timestamp(Q)

» read executed, R-timestamp(Q) set to max(R-timestamp(Q),
TS(T))

d

6.90 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts with Java — 8th Edition

Timestamp-ordering Protocol

B Suppose Ti executes write(Q)

o If TS(T)) < R-timestamp(Q), value Q produced by T, was needed
previously and T, assumed it would never be produced

» Write operation rejected, T, rolled back

o If TS(T) < W-tiimestamp(Q), T, attempting to write obsolete value
of Q

» Write operation rejected and T, rolled back
e Otherwise, write executed

®m Any rolled back transaction T, is assigned new timestamp and restarted

m Algorithm ensures conflict serializability and freedom from deadlock

d

4

Operating System Concepts with Java — 8t Edition 6.91 Silberschatz, Galvin and Gagne ©2009

S _'-“Schedule Possible Under Timestamp Protocol

I I3
read(B)
read(B)
write(B)
read(A)
read(A)
write(A)

Operating System Concepts with Java — 8th Edition

6.92

iy’

/
<4

Silberschatz, Galvin and Gagne ©2009

End of Chapter 6

Operating System Concepts with Java — 8th Edition 6.93 Silberschatz, Galvin and Gagne ©2009

	Module 6: Process Synchronization
	Module 6: Process Synchronization
	Objectives
	Background
	Producer
	Consumer
	Race Condition
	Solution to Critical-Section Problem
	Structure of a Typical Process
	Peterson’s Solution
	Algorithm for Process Pi
	Solution to Critical-Section Problem�Using Locks
	Synchronization Hardware
	Data Structure for Hardware Solutions
	Solution using GetAndSet Instruction
	Solution using Swap Instruction
	Semaphore
	Semaphore as General Synchronization Tool
	Java Example Using Semaphores
	Java Example Using Semaphores
	Semaphore Implementation
	Semaphore Implementation with �no Busy waiting
	Semaphore Implementation with �no Busy waiting (Cont.)
	Deadlock and Starvation
	Classical Problems of Synchronization
	Bounded-Buffer Problem
	Bounded-Buffer Problem
	Bounded-Buffer insert()
	Bounded-buffer remove()
	Bounded-buffer producer
	Bounded-buffer consumer
	Bounded-buffer factory
	Readers-Writers Problem
	Readers-Writers Problem
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Dining-Philosophers Problem
	Dining-Philosophers Problem (Cont.)
	Problems with Semaphores
	Monitors
	Syntax of a Monitor
	Schematic view of a Monitor
	Condition Variables
	 Monitor with Condition Variables
	Solution to Dining Philosophers
	Solution to Dining Philosophers (Cont.)
	Java Synchronization
	Java Synchronization
	Java Synchronization
	Java Synchronization wait/notify()
	Java Synchronization
	Java Synchronization – wait/notify
	Java Synchronization – wait/notify
	Java Synchronization - Bounded Buffer
	Java Synchronization
	Java Synchronization
	Java Synchronization - Readers-Writers
	Java Synchronization - Readers-Writers
	Java Synchronization - Readers-Writers
	Java Synchronization
	Java Synchronization
	Concurrency Features in Java 5
	Concurrency Features in Java 5
	Concurrency Features in Java 5
	Concurrency Features in Java 5
	Concurrency Features in Java 5
	Synchronization Examples
	Solaris Synchronization
	Windows XP Synchronization
	Linux Synchronization
	Pthreads Synchronization
	Atomic Transactions
	Transactional Memory
	System Model
	Types of Storage Media
	Log-Based Recovery
	Log-Based Recovery Algorithm
	Checkpoints
	Concurrent Transactions
	Serializability
	Schedule 1: T0 then T1
	Nonserial Schedule
	Schedule 2: Concurrent Serializable Schedule
	Locking Protocol
	Two-phase Locking Protocol
	Timestamp-based Protocols
	Timestamp-based Protocol Implementation
	Timestamp-ordering Protocol
	 Schedule Possible Under Timestamp Protocol
	End of Chapter 6

