Chapter 9: Virtual Memory

Operating System Concepts with Java — 8th Edition 9.1 Silberschatz, Galvin and Gagne ©2009

Chapter 9. Virtual Memory

Background

Demand Paging
Copy-on-Write

Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations

Operating-System Examples

Operating System Concepts with Java — 8th Edition

9.2

iy’

|

Silberschatz, Galvin and Gagne ©2009

Objectives

®m To describe the benefits of a virtual memory system

® To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

® To discuss the principle of the working-set model

sy’

|

Operating System Concepts with Java — 8th Edition 9.3 Silberschatz, Galvin and Gagne ©2009

Background

m Virtual memory — separation of user logical memory from physical
memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than physical
address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

® Virtual memory can be implemented via:
e Demand paging
e Demand segmentation

d

4

Operating System Concepts with Java — 8th Edition 9.4 Silberschatz, Galvin and Gagne ©2009

Virtual Memory That is Larger Than
Physical Memory

page O
page 1
page 2 P e
— 4
\“—x:—
memory |
page v physical
_ memory
virtual
memaory
4
Operating System Concepts with Java — 8th Edition 9.5

Silberschatz, Galvin and Gagne ©2009

Virtual-address Space

Max

Operating System Concepts with Java — 8th Edition

stack

heap

data

code

9.6

by’

Silberschatz, Galvin and Gagne ©2009

Shared Library Using Virtual Memory

stack

shared library

heap

data

code

Operating System Concepts with Java — 8th Edition

stack

shared
pages

i

shared library

9.7

heap

data

code

iy’

<

Silberschatz, Galvin and Gagne ©2009

Demand Paging

® Bring a page into memory only when it is needed
e Less |/O needed
e Less memory needed
e [Faster response
e More users

m Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory

B Lazy swapper —never swaps a page into memory unless page will be

needed

|

Operating System Concepts with Java — 8th Edition 9.8 Silberschatz, Galvin and Gagne ©2009

e Swapper that deals with pages is a pager

Transfer of a Paged Memory to
Contiguous Disk Space

N
. N

program swap out ol N1 120 .]

' | PR
g 8] o[110 1]
1 12 13 14 15[]

program
. "W swap in 16[J17[118L]19L]
g 20[21 J22[]23[]

-,

main
memory

<

Operating System Concepts with Java — 8th Edition 9.9 Silberschatz, Galvin and Gagne ©2009

Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory, i = not-in-memory)

®m |[nitially valid—invalid bit is set to i on all entries
Example of a page table snapshot:

Frame # valid-invalid bit

page table

® During address translation, if valid—invalid bit in page table entry : V
IS | = page fault

Operating System Concepts with Java — 8t Edition 9.10 Silberschatz, Galvin and Gagne ©2009

Page Table When Some Pages Are
Not in Main Memory

0
i
0 A 2
valid—invalid
1| B frame bit 3 <
2 C ol 4 v 41 A
s D 1] : H
21 6 |v
4 E sl i 6 C |]
5 F 4 i 7 -
50 g [y C D E
6 G 5 : 8 B
7| H di ol F F] [e] [B
logical page table 10
memory (.
11 \—//
12
13
14
15

physical memory

Operating System Concepts with Java — 8th Edition 9.11 Silberschatz, Galvin and Gagne ©2009

Page Fault

m If there is a reference to a page, first reference to that page will trap to
operating system:

page fault
1. Operating system looks at another table to decide:
- Invalid reference = abort
- Just not in memory
Get empty frame
Swap page into frame
Reset tables
Set validation bit = v
Restart the instruction that caused the page fault

o R~ W

iy’

4

Operating System Concepts with Java — 8t Edition 9.12 Silberschatz, Galvin and Gagne ©2009

Page Fault (Cont.)

B Restart instruction
e block move

e auto increment/decrement location

4
i

Operating System Concepts with Java — 8th Edition 9.13 Silberschatz, Galvin and Gagne ©2009

Steps in Handling a Page Fault

page is on
backing store

operating
system

©

reference
trap

@
load M X E
©®

restart page table

instruction
free frame e
reset page bring in

table missing page

physical " f
memory

/
<4

Operating System Concepts with Java — 8t Edition 9.14 Silberschatz, Galvin and Gagne ©2009

Performance of Demand Paging

m PageFaultRate0<p<1.0
e if p =0 no page faults
e if p=1, everyreference is a fault

m Effective Access Time (EAT)
EAT = (1 — p) X memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

iy’

|

Operating System Concepts with Java — 8t Edition 9.15 Silberschatz, Galvin and Gagne ©2009

Demand Paging Example

® Memory access time = 200 nanoseconds

® Average page-fault service time = 8 milliseconds

m EAT =(1-p)x 200 + p (8 milliseconds)
=(1-p x200 + p x 8,000,000
=200 + p x 7,999,800

m If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

d

|

Operating System Concepts with Java — 8t Edition 9.16 Silberschatz, Galvin and Gagne ©2009

Process Creation

® Virtual memory allows other benefits during process creation:
- Copy-on-Write

- Memory-Mapped Files (later)

Operating System Concepts with Java — 8th Edition 9.17 Silberschatz, Galvin and Gagne ©2009

Copy-on-Write

m Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

m COW allows more efficient process creation as only modified pages
are copied

®m Free pages are allocated from a pool of zeroed-out pages

d

4

Operating System Concepts with Java — 8t Edition 9.18 Silberschatz, Galvin and Gagne ©2009

Before Process 1 Modifies Page C

physical
process, memory process,

_|—> page A &

By g

iy’

/
<4

Operating System Concepts with Java — 8t Edition 9.19 Silberschatz, Galvin and Gagne ©2009

After Process 1 Modifies Page C

physical
memory process,

process,

A

Ellaany
e page B «—
page C —I]

— Copy of page C

iy’

/
<4

9.20 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts with Java — 8th Edition

~What happens if there is no free frame?

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

® Same page may be brought into memory several times

iy’

|

Operating System Concepts with Java — 8t Edition 9.21 Silberschatz, Galvin and Gagne ©2009

Page Replacement

m Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

iy’

4

Operating System Concepts with Java — 8t Edition 9.22 Silberschatz, Galvin and Gagne ©2009

Need For Page Replacement

valid—invalid
0 H frame bit 0| monitor
Toaam N ¥ 1 l AT TN
oa \-//
PC—> 3 v
2| 4 ¥ 2| D
5 |v
3 M i 3| H 5
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
M
valid—invalid T E
0 A frame bit
N / physical
1 B 6 |v memory K_//
2| D i
2 |V
3 - 7|
logical memory page table
for user 2 for user 2

/
<4

Operating System Concepts with Java — 8t Edition 9.23 Silberschatz, Galvin and Gagne ©2009

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Restart the process

d

|

Operating System Concepts with Java — 8t Edition 9.24 Silberschatz, Galvin and Gagne ©2009

Page Replacement

frame valid—invalid bit
T S
swap out
Change ViCtim
0 |i to invalid @ page
i |v /
@ t| vietim
reset page
table for o .
page table \
hew page @ SHED \
desired
page in

physical
memory

Operating System Concepts with Java — 8th Edition 9.25 Silberschatz, Galvin and Gagne ©2009

Page Replacement Algorithms

® Want lowest page-fault rate

®m Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults

on that string
® [n all our examples, the reference string is

1,2,3,4,1,2,5,1,2,3,4,5

iy’

|

Operating System Concepts with Java — 8t Edition 9.26 Silberschatz, Galvin and Gagne ©2009

Graph of Page Faults Versus
The Number of Frames

o

16
w 14 \
E \
3 12
QD
& 10
(&1
© 8
O
2

1 2 3 4 5 6
number of frames

by’

j!
Operating System Concepts with Java — 8t Edition 9.27 Silberschatz, Galvin and Gagne ©2009

First-In-First-Out (FIFO) Algorithm

m Referencestring:1,2,3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

1 11| 4 5

2 2|1 3 9page faults

313|2 4
m 4 frames
1115 4
2 12| 1 5 10page faults
3 13| 2
4 1413

m Belady’'s Anomaly: more frames = more page faults W/

|

Operating System Concepts with Java — 8t Edition 9.28 Silberschatz, Galvin and Gagne ©2009

FIFO Page Replacement

reference string
/7 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

E?EQ 2E4E4§ ol [o 727
| | [o] o] |o 3| 18] [8] 2] |2] |2 1] |4 1| [o] [o
L] [1| o] |o] o] 3] [8 3| |2 2| 2] [4

page frames

Operating System Concepts with Java — 8th Edition 9.29 Silberschatz, Galvin and Gagne ©2009

{ FIFO Illustrating Belady’s Anomaly

16
o 14
S
8 12 &
(D]
g 10
0
© 8
g 5
- ¢
S 4

2

1 2 3 4 5 6 7

number of frames

by’

j!
Operating System Concepts with Java — 8th Edition 9.30 Silberschatz, Galvin and Gagne ©2009

Optimal Algorithm

B Replace page that will not be used for longest period of time

® 4 frames example

1,2,3,4,1,2,5,1,2,3,4,5

® How do you know this?

A TW|IDN| PP

4

6 page faults

m Used for measuring how well your algorithm performs

Operating System Concepts with Java — 8th Edition

9.31

sy’

|

Silberschatz, Galvin and Gagne ©2009

Optimal Page Replacement

reference string
/ o0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 A1

IEEE B B 2 g [
| [o] [o] o] o] [a 0 o B
IOGE B [3 i i

page frames

-

Operating System Concepts with Java — 8th Edition 9.32 Silberschatz, Galvin and Gagne ©2009

“Least Recently Used (LRU) Algorithm

m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5

1|5
2 (|2
4 || 4
3|3

AW IDN |
O N
W | o1 DN |

® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

d

|

Operating System Concepts with Java — 8t Edition 9.33 Silberschatz, Galvin and Gagne ©2009

LRU Page Replacement

reference string
/7 0o 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 [
o

A
i
[

EIEIES
(@|o|n]
EIE=TES
(oo +]

ISIEEIES
nv]w|o]
(o]~
LSIE=T
(~]o]~]

page frames

<

Operating System Concepts with Java — 8th Edition 9.34 Silberschatz, Galvin and Gagne ©2009

LRU Algorithm (Cont.)

m Stack implementation — keep a stack of page numbers in a double link
form:

e Page referenced:

» move it to the top

» requires 6 pointers to be changed
e No search for replacement

iy’

/
<4

Operating System Concepts with Java — 8t Edition 9.35 Silberschatz, Galvin and Gagne ©2009

Use Of A Stack to Record
the Most Recent Page References

reference string
4 7 o0 7 1 o0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after

<4

Operating System Concepts with Java — 8th Edition 9.36 Silberschatz, Galvin and Gagne ©2009

LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = O
e When page is referenced bit setto 1
e Replace the one which is O (if one exists)
» We do not know the order, however

m Second chance
e Need reference bit

e Clock replacement

o h;]page to be replaced (in clock order) has reference bit = 1
then:

» set reference bhit O

» leave page in memory

» replace next page (in clock order), subject to same
rules

iy’

4

Operating System Concepts with Java — 8t Edition 9.37 Silberschatz, Galvin and Gagne ©2009

Second-Chance (clock)
Page-Replacement Algorithm

reference pages
bits

0

[o]

next 1
victim

< E «E

v

\—/

circular queue of pages

(a)

Operating System Concepts with Java — 8th Edition

9.38

reference pages
bits

0

o]

S E E H

J
/

circular queue of pages

(b))

Silberschatz, Galvin and Gagne ©2009

Counting Algorithms

m Keep a counter of the number of references that have been made to
each page

m LFU Algorithm: replaces page with smallest count

®m MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be used

sy’

|

Operating System Concepts with Java — 8t Edition 9.39 Silberschatz, Galvin and Gagne ©2009

Allocation of Frames

m Each process needs minimum number of pages

m Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to

®m Two major allocation schemes
e fixed allocation
e priority allocation

sy’

|

Operating System Concepts with Java — 8t Edition 9.40 Silberschatz, Galvin and Gagne ©2009

Fixed Allocation

m Equal allocation — For example, if there are 100 frames and 5
processes, give each process 20 frames.

®m Proportional allocation — Allocate according to the size of

process
—S; =Size of process p;
_S = ZSi

—m = total number of frames

. S,
—a, =allocation for p; = §X m

m = 64

s; =10

s, =127
10

a.l —X 64 5
137

a, _12—7>< 64 ~ 59 |
137

4

Operating System Concepts with Java — 8t Edition 9.41 Silberschatz, Galvin and Gagne ©2009

Priority Allocation

®m Use a proportional allocation scheme using priorities rather than size

m [f process P, generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with lower priority
number

|

Operating System Concepts with Java — 8t Edition 9.42 Silberschatz, Galvin and Gagne ©2009

Global vs. Local Allocation

m Global replacement — process selects a replacement frame from the
set of all frames; one process can take a frame from another

m Local replacement — each process selects from only its own set of
allocated frames

<

Operating System Concepts with Java — 8th Edition 9.43 Silberschatz, Galvin and Gagne ©2009

Thrashing

m |f a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

e |ow CPU utilization

e operating system thinks that it needs to increase the degree of
multiprogramming

e another process added to the system

m Thrashing = a process is busy swapping pages in and out

iy’

4

Operating System Concepts with Java — 8t Edition 9.44 Silberschatz, Galvin and Gagne ©2009

Thrashing (Cont.)

|
| thrashing

CPU utilization

degree of multiprogramming

<

Operating System Concepts with Java — 8th Edition 9.45 Silberschatz, Galvin and Gagne ©2009

Demand Paging and Thrashing

® Why does demand paging work?
Locality model

e Process migrates from one locality to another
e Localities may overlap

® Why does thrashing occur?
2 size of locality > total memory size

iy’

/
<4

Operating System Concepts with Java — 8t Edition 9.46 Silberschatz, Galvin and Gagne ©2009

ﬂmocality In A Memory-Reference Pattern

34 [H—ir i L
. !';I ‘!1”' U ;i-lliilll.:.-.i“l::”” L R T -|.||‘ 'il‘ L
FrTRS 4 [IuT =
|
32— - :
, il .II ’ll-'I l"'l | i
.'1“”. {1l il ||!I| e |¥|| : il-|
" T T
ooy I' ' I[Il'ﬁ ”‘.' |1]
ikl L ORI { !
30 - - "'u‘ : :
m\ Mﬂll i 10
28
73
@
g
S 26 |t
c "
5 I
E I
il 1
24 4~ I”[“l’hﬁ
o T
I
T e o) g "
e g O -? |1 -
nnn_uullh Tl il uh
§ 20 4 St b Ir. II] I“ |” I‘” |
% | L\ o ||||' " |'||||
5 T | e -
S 18 |'illilil'!-'?I"IIJ'.H!I'!i!ll'-“l![h[:'ﬂ_s'llﬂuu'-i|-:s||u.|:||||||- R e T
execution time ——»

Operating System Concepts with Java — 8th Edition 9.47 Silberschatz, Galvin and Gagne ©2009

Working-Set Model

® A =working-set window = a fixed number of page references
Example: 10,000 instruction

m WSS, (working set of Process P,) =
total number of pages referenced in the most recent A (varies in time)

e if A too small will not encompass entire locality
e if Atoo large will encompass several localities
e if A =0 = will encompass entire program

m D =3X WSS, = total demand frames
m if D> m = Thrashing

m Policy if D > m, then suspend one of the processes

d

4

Operating System Concepts with Java — 8t Edition 9.48 Silberschatz, Galvin and Gagne ©2009

Working-set model

page reference table
. ..2615777751623412344434344413234443444...

— —]

? Ly
WS(t,) ={1,256,7) WS(t,) = (3,4}

sy’

Operating System Concepts with Java — 8th Edition 9.49 Silberschatz, Galvin and Gagne ©2009

Keeping Track of the Working Set

® Approximate with interval timer + a reference bit

m Example: A =10,000
e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page

e Whenever a timer interrupts copy and sets the values of all
reference bitsto 0

e If one of the bits in memory = 1 = page in working set
® Why is this not completely accurate?

B Improvement = 10 bits and interrupt every 1000 time units

iy’

4

Operating System Concepts with Java — 8t Edition 9.50 Silberschatz, Galvin and Gagne ©2009

Page-Fault Frequency Scheme

m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame

e If actual rate too high, process gains frame

A

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

k

number of frames

|

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts with Java — 8th Edition 9.51

Working Sets and Page Fault Rates

working set
1
page
fault
rate
0 >
time
Operating System Concepts with Java — 8th Edition 9.52

Silberschatz, Galvin and Gagne ©2009

Memory-Mapped Files

® Memory-mapped file I1/O allows file 1/0O to be treated as routine memory
access by mapping a disk block to a page in memory.

m A file is initially read using demand paging. A page-sized portion of the
file is read from the file system into a physical page. Subsequent
reads/writes to/from the file are treated as ordinary memory accesses.

m Simplifies file access by treating file I/O through memory rather than
read() write() system calls.

m Also allows several processes to map the same file allowing the pages
in memory to be shared.

o’

®

4

Operating System Concepts with Java — 8t Edition 9.53 Silberschatz, Galvin and Gagne ©2009

g i 1
, i 2
I |
T 3
1 - —— = x I ~r 4
Il =—>» | S -
2 _-; A 3 -« - ! : :' 5
3 prom i emipmid == T ™ 6
4 T : Lyn]
T e 6 e L)
.- L 1]
Lo ! Ll
R . gl |1 |
processA 'l [T3 5 €« —-—|-! |, 1| process B
virtual memory: r i il I :virtual memory
|
1
o !
| ===t > 4 -y N :
____.___: 2 ‘_ L (-
physical memory
— | [—
1]2[3]|4]|5]|6
disk file

<

Operating System Concepts with Java — 8th Edition 9.54 Silberschatz, Galvin and Gagne ©2009

In Windows

Memory-Mapped Shared Memory

Process,

shared Lo
memory

Operating System Concepts with Java — 8th Edition

memory-mapped
~ file

shared
memory

9.55

process,

shared
memory

Silberschatz, Galvin and Gagne ©2009

Memory-Mapped Files in Java

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MemoryMapRead(Only
{
// Assume the page size is 4 KB
public static finmal int PAGE_SIZE = 4096;

public static void main(String args[]) throws IOException {
RandomAccessFile inFile = new RandomAccessFile(args[0],"r");

FileChannel in = inFile.getChannel();
MappedByteBuffer mappedBuffer =
in.map(FileChannel .MapMode.READ.ONLY, 0, in.size());
long numPages = in.size() / (long)PAGE SIZE;
if (in.size()) PAGESIZE > 0)
++numPages ;

// we will "touch" the first byte of every page
int position = 0;
for (long i = 0; i < numPages; i++) {
byte item = mappedBuffer.get(position);
position += PAGESIZE;

}

in.close();
inFile.close();

}

/
<4

Operating System Concepts with Java — 8th Edition 9.56 Silberschatz, Galvin and Gagne ©2009

Allocating Kernel Memory

®m Treated differently from user memory

m Often allocated from a free-memory pool
e Kernel requests memory for structures of varying sizes
e Some kernel memory needs to be contiguous

f
<4

Operating System Concepts with Java — 8t Edition 9.57 Silberschatz, Galvin and Gagne ©2009

Buddy System

®m Allocates memory from fixed-size segment consisting of physically-
contiguous pages

® Memory allocated using power-of-2 allocator
e Satisfies requests in units sized as power of 2
e Request rounded up to next highest power of 2

e When smaller allocation needed than is available, current chunk
split into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available

d

4

Operating System Concepts with Java — 8t Edition 9.58 Silberschatz, Galvin and Gagne ©2009

Buddy System Allocator

physically contiguous pages

256 KB

128 KB 128 KB

64 KB 64 KB
B Bp
T
32 KB| |32 KB
C Ch

Operating System Concepts with Java — 8th Edition 9.59 Silberschatz, Galvin and Gagne ©2009

Slab Allocator

B Alternate strategy
B Slab is one or more physically contiguous pages
B Cache consists of one or more slabs

®m Single cache for each unique kernel data structure
e Each cache filled with objects — instantiations of the data structure

®m When cache created, filled with objects marked as free
® When structures stored, objects marked as used

m If slab is full of used objects, next object allocated from empty slab
e If no empty slabs, new slab allocated

B Benefits include no fragmentation, fast memory request satisfaction

d

4

Operating System Concepts with Java — 8t Edition 9.60 Silberschatz, Galvin and Gagne ©2009

Slab Allocation

kernel objects

3 KB
objects

7 KB
objects

caches

slabs

WA

Operating System Concepts with Java — 8th Edition

9.61

physical
contiguous
pages

sy’

|

Silberschatz, Galvin and Gagne ©2009

Other Issues -- Prepaging

® Prepaging

e To reduce the large number of page faults that occurs at process
startup

e Prepage all or some of the pages a process will need, before
they are referenced

e But if prepaged pages are unused, I/O and memory was wasted
e Assume s pages are prepaged and a of the pages is used

» Is cost of s * a save pages faults > or < than the cost of
prepaging
s * (1- @) unnecessary pages?

» anear zero = prepaging loses

d

4

Operating System Concepts with Java — 8t Edition 9.62 Silberschatz, Galvin and Gagne ©2009

Other Issues — Page Size

m Page size selection must take into consideration:
e fragmentation
e table size
e |/O overhead
e |ocality

y’

Vg
~adi

Operating System Concepts with Java — 8th Edition 9.63 Silberschatz, Galvin and Gagne ©2009

Other Issues — TLB Reach

® TLB Reach - The amount of memory accessible from the TLB
B TLB Reach = (TLB Size) X (Page Size)

m |deally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults

B Increase the Page Size

e This may lead to an increase in fragmentation as not all
applications require a large page size

® Provide Multiple Page Sizes

e This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

d

4

Operating System Concepts with Java — 8t Edition 9.64 Silberschatz, Galvin and Gagne ©2009

Other Issues — Program Structure

® Program structure
e INt[128,128] data;
e Each row is stored in one page
e Program 1

128 x 128 = 16,384 page faults

e Program 2
for (1 = 0; 1 < 128; 1++)
for (j = 0; j < 128; j++)
data[i1,j] = O;

128 page faults |)

|

Operating System Concepts with Java — 8t Edition 9.65 Silberschatz, Galvin and Gagne ©2009

Other Issues — I/O interlock

m |/O Interlock — Pages must sometimes be locked into memory

m Consider I/O - Pages that are used for copying a file from a device
must be locked from being selected for eviction by a page
replacement algorithm

iy’

|

Operating System Concepts with Java — 8t Edition 9.66 Silberschatz, Galvin and Gagne ©2009

Reason Why Frames Used For I/O
Must Be In Memory

buffer i

Operating System Concepts with Java — 8th Edition

9.67

disk drive

d

Silberschatz, Galvin and Gagne ©2009

® Windows XP

Operating System Examples

m Solaris

by’

7
Operating System Concepts with Java — 8th Edition 9.68 Silberschatz, Galvin and Gagne ©2009

Windows XP

m Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page.

B Processes are assigned working set minimum and working set
maximum.

®m Working set minimum is the minimum number of pages the process is
guaranteed to have in memory.

m A process may be assigned as many pages up to its working set
maximum.

® When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount
of free memory.

® Working set trimming removes pages from processes that have pages
in excess of their working set minimum. X

4

Operating System Concepts with Java — 8t Edition 9.69 Silberschatz, Galvin and Gagne ©2009

Solaris

B Maintains a list of free pages to assign faulting processes

B Lotsfree — threshold parameter (amount of free memory) to begin paging
m Desfree — threshold parameter to increasing paging

® Minfree — threshold parameter to being swapping

m Paging is performed by pageout process

m Pageout scans pages using modified clock algorithm

®m Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

m Pageout is called more frequently depending upon the amount of free
memory available

o’

®

Operating System Concepts with Java — 8t Edition 9.70 Silberschatz, Galvin and Gagne ©2009

Solaris 2 Page Scanner

8192 |
fastscan

scan rate

100
slowscan

| |
| | | »
minfree desfree lotsfree
amount of free memory

Operating System Concepts with Java — 8th Edition 9.71 Silberschatz, Galvin and Gagne ©2009

End of Chapter 9

Operating System Concepts with Java — 8th Edition 9.72 Silberschatz, Galvin and Gagne ©2009

	Chapter 9: Virtual Memory
	Chapter 9: Virtual Memory
	Objectives
	Background
	Virtual Memory That is Larger Than�Physical Memory
	Virtual-address Space
	Shared Library Using Virtual Memory
	Demand Paging
	Transfer of a Paged Memory to�Contiguous Disk Space
	Valid-Invalid Bit
	Page Table When Some Pages Are�Not in Main Memory
	Page Fault
	Page Fault (Cont.)
	Steps in Handling a Page Fault
	Performance of Demand Paging
	Demand Paging Example
	Process Creation
	Copy-on-Write
	Before Process 1 Modifies Page C
	After Process 1 Modifies Page C
	What happens if there is no free frame?
	Page Replacement
	Need For Page Replacement
	Basic Page Replacement
	Page Replacement
	Page Replacement Algorithms
	Graph of Page Faults Versus �The Number of Frames
	First-In-First-Out (FIFO) Algorithm
	FIFO Page Replacement
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Optimal Page Replacement
	Least Recently Used (LRU) Algorithm
	LRU Page Replacement
	LRU Algorithm (Cont.)
	Use Of A Stack to Record �the Most Recent Page References
	LRU Approximation Algorithms
	Second-Chance (clock) �Page-Replacement Algorithm
	Counting Algorithms
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Thrashing
	Thrashing (Cont.)
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-Set Model
	Working-set model
	Keeping Track of the Working Set
	Page-Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Memory-Mapped Files
	Memory Mapped Files
	Memory-Mapped Shared Memory�in Windows
	Memory-Mapped Files in Java
	Allocating Kernel Memory
	Buddy System
	Buddy System Allocator
	Slab Allocator
	Slab Allocation
	Other Issues -- Prepaging
	Other Issues – Page Size
	Other Issues – TLB Reach
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Reason Why Frames Used For I/O�Must Be In Memory
	Operating System Examples
	Windows XP
	Solaris
	Solaris 2 Page Scanner
	End of Chapter 9

