
9.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Chapter 9: Virtual Memory

Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Objectives

To describe the benefits of a virtual memory system

To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

To discuss the principle of the working-set model

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Background

Virtual memory – separation of user logical memory from physical
memory.

Only part of the program needs to be in memory for execution
Logical address space can therefore be much larger than physical
address space
Allows address spaces to be shared by several processes
Allows for more efficient process creation

Virtual memory can be implemented via:
Demand paging
Demand segmentation

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Virtual Memory That is Larger Than
Physical Memory

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Virtual-address Space

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging

Bring a page into memory only when it is needed
Less I/O needed
Less memory needed
Faster response
More users

Page is needed ⇒ reference to it
invalid reference ⇒ abort
not-in-memory ⇒ bring to memory

Lazy swapper – never swaps a page into memory unless page will be
needed

Swapper that deals with pages is a pager

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Transfer of a Paged Memory to
Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Valid-Invalid Bit
With each page table entry a valid–invalid bit is associated
(v ⇒ in-memory, i ⇒ not-in-memory)
Initially valid–invalid bit is set to i on all entries
Example of a page table snapshot:

During address translation, if valid–invalid bit in page table entry
is I ⇒ page fault

….

v
v
v
v
i

i
i

Frame # valid-invalid bit

page table

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Table When Some Pages Are
Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Fault

If there is a reference to a page, first reference to that page will trap to
operating system:

page fault
1. Operating system looks at another table to decide:

- Invalid reference ⇒ abort
- Just not in memory

2. Get empty frame
3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Fault (Cont.)

Restart instruction
block move

auto increment/decrement location

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Steps in Handling a Page Fault

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Process Creation

Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Copy-on-Write

Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page copied

COW allows more efficient process creation as only modified pages
are copied

Free pages are allocated from a pool of zeroed-out pages

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Before Process 1 Modifies Page C

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

After Process 1 Modifies Page C

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

What happens if there is no free frame?

Page replacement – find some page in memory, but not
really in use, swap it out

algorithm
performance – want an algorithm which will result in
minimum number of page faults

Same page may be brought into memory several times

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Replacement

Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk

Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Need For Page Replacement

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Restart the process

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Replacement

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults
on that string

In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Graph of Page Faults Versus
The Number of Frames

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

First-In-First-Out (FIFO) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time per process)

4 frames

Belady’s Anomaly: more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

FIFO Page Replacement

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Optimal Algorithm

Replace page that will not be used for longest period of time

4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

How do you know this?

Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Optimal Page Replacement

9.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to
determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Page Replacement

9.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page numbers in a double link
form:

Page referenced:
move it to the top
requires 6 pointers to be changed

No search for replacement

9.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Use Of A Stack to Record
the Most Recent Page References

9.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

LRU Approximation Algorithms

Reference bit
With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace the one which is 0 (if one exists)

We do not know the order, however

Second chance
Need reference bit
Clock replacement
If page to be replaced (in clock order) has reference bit = 1
then:

set reference bit 0
leave page in memory
replace next page (in clock order), subject to same
rules

9.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Second-Chance (clock)
Page-Replacement Algorithm

9.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Counting Algorithms

Keep a counter of the number of references that have been made to
each page

LFU Algorithm: replaces page with smallest count

MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be used

9.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Allocation of Frames

Each process needs minimum number of pages

Example: IBM 370 – 6 pages to handle SS MOVE instruction:
instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Two major allocation schemes
fixed allocation
priority allocation

9.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Fixed Allocation

Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.
Proportional allocation – Allocate according to the size of
process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

≈×=

≈×=

=

=
=

a

a

s
s
m

i

9.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Priority Allocation

Use a proportional allocation scheme using priorities rather than size

If process Pi generates a page fault,
select for replacement one of its frames
select for replacement a frame from a process with lower priority
number

9.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Global vs. Local Allocation

Global replacement – process selects a replacement frame from the
set of all frames; one process can take a frame from another

Local replacement – each process selects from only its own set of
allocated frames

9.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thrashing

If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

low CPU utilization
operating system thinks that it needs to increase the degree of
multiprogramming
another process added to the system

Thrashing ≡ a process is busy swapping pages in and out

9.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Thrashing (Cont.)

9.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Demand Paging and Thrashing

Why does demand paging work?
Locality model

Process migrates from one locality to another
Localities may overlap

Why does thrashing occur?
Σ size of locality > total memory size

9.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Locality In A Memory-Reference Pattern

9.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working-Set Model

Δ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction

WSSi (working set of Process Pi) =
total number of pages referenced in the most recent Δ (varies in time)

if Δ too small will not encompass entire locality
if Δ too large will encompass several localities
if Δ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames

if D > m ⇒ Thrashing

Policy if D > m, then suspend one of the processes

9.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working-set model

9.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Keeping Track of the Working Set

Approximate with interval timer + a reference bit

Example: Δ = 10,000
Timer interrupts after every 5000 time units
Keep in memory 2 bits for each page
Whenever a timer interrupts copy and sets the values of all
reference bits to 0
If one of the bits in memory = 1 ⇒ page in working set

Why is this not completely accurate?

Improvement = 10 bits and interrupt every 1000 time units

9.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Page-Fault Frequency Scheme

Establish “acceptable” page-fault rate
If actual rate too low, process loses frame
If actual rate too high, process gains frame

9.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Working Sets and Page Fault Rates

9.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory.

A file is initially read using demand paging. A page-sized portion of the
file is read from the file system into a physical page. Subsequent
reads/writes to/from the file are treated as ordinary memory accesses.

Simplifies file access by treating file I/O through memory rather than
read() write() system calls.

Also allows several processes to map the same file allowing the pages
in memory to be shared.

9.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Memory Mapped Files

9.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Memory-Mapped Shared Memory
in Windows

9.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Memory-Mapped Files in Java

9.57 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Allocating Kernel Memory

Treated differently from user memory

Often allocated from a free-memory pool
Kernel requests memory for structures of varying sizes
Some kernel memory needs to be contiguous

9.58 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Buddy System

Allocates memory from fixed-size segment consisting of physically-
contiguous pages

Memory allocated using power-of-2 allocator
Satisfies requests in units sized as power of 2
Request rounded up to next highest power of 2
When smaller allocation needed than is available, current chunk
split into two buddies of next-lower power of 2

Continue until appropriate sized chunk available

9.59 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Buddy System Allocator

9.60 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Slab Allocator

Alternate strategy

Slab is one or more physically contiguous pages

Cache consists of one or more slabs

Single cache for each unique kernel data structure
Each cache filled with objects – instantiations of the data structure

When cache created, filled with objects marked as free

When structures stored, objects marked as used

If slab is full of used objects, next object allocated from empty slab
If no empty slabs, new slab allocated

Benefits include no fragmentation, fast memory request satisfaction

9.61 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Slab Allocation

9.62 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Other Issues -- Prepaging

Prepaging
To reduce the large number of page faults that occurs at process
startup
Prepage all or some of the pages a process will need, before
they are referenced
But if prepaged pages are unused, I/O and memory was wasted
Assume s pages are prepaged and α of the pages is used

Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?
α near zero ⇒ prepaging loses

9.63 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Other Issues – Page Size

Page size selection must take into consideration:
fragmentation
table size
I/O overhead
locality

9.64 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Other Issues – TLB Reach

TLB Reach - The amount of memory accessible from the TLB

TLB Reach = (TLB Size) X (Page Size)

Ideally, the working set of each process is stored in the TLB
Otherwise there is a high degree of page faults

Increase the Page Size
This may lead to an increase in fragmentation as not all
applications require a large page size

Provide Multiple Page Sizes
This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

9.65 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Other Issues – Program Structure

Program structure
Int[128,128] data;

Each row is stored in one page
Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

9.66 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Other Issues – I/O interlock

I/O Interlock – Pages must sometimes be locked into memory

Consider I/O - Pages that are used for copying a file from a device
must be locked from being selected for eviction by a page
replacement algorithm

9.67 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Reason Why Frames Used For I/O
Must Be In Memory

9.68 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Operating System Examples

Windows XP

Solaris

9.69 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Windows XP

Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page.

Processes are assigned working set minimum and working set
maximum.

Working set minimum is the minimum number of pages the process is
guaranteed to have in memory.

A process may be assigned as many pages up to its working set
maximum.

When the amount of free memory in the system falls below a threshold,
automatic working set trimming is performed to restore the amount
of free memory.

Working set trimming removes pages from processes that have pages
in excess of their working set minimum.

9.70 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris

Maintains a list of free pages to assign faulting processes

Lotsfree – threshold parameter (amount of free memory) to begin paging

Desfree – threshold parameter to increasing paging

Minfree – threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan

Pageout is called more frequently depending upon the amount of free
memory available

9.71 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

Solaris 2 Page Scanner

9.72 Silberschatz, Galvin and Gagne ©2009Operating System Concepts with Java – 8th Edition

End of Chapter 9

	Chapter 9: Virtual Memory
	Chapter 9: Virtual Memory
	Objectives
	Background
	Virtual Memory That is Larger Than�Physical Memory
	Virtual-address Space
	Shared Library Using Virtual Memory
	Demand Paging
	Transfer of a Paged Memory to�Contiguous Disk Space
	Valid-Invalid Bit
	Page Table When Some Pages Are�Not in Main Memory
	Page Fault
	Page Fault (Cont.)
	Steps in Handling a Page Fault
	Performance of Demand Paging
	Demand Paging Example
	Process Creation
	Copy-on-Write
	Before Process 1 Modifies Page C
	After Process 1 Modifies Page C
	What happens if there is no free frame?
	Page Replacement
	Need For Page Replacement
	Basic Page Replacement
	Page Replacement
	Page Replacement Algorithms
	Graph of Page Faults Versus �The Number of Frames
	First-In-First-Out (FIFO) Algorithm
	FIFO Page Replacement
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Optimal Page Replacement
	Least Recently Used (LRU) Algorithm
	LRU Page Replacement
	LRU Algorithm (Cont.)
	Use Of A Stack to Record �the Most Recent Page References
	LRU Approximation Algorithms
	Second-Chance (clock) �Page-Replacement Algorithm
	Counting Algorithms
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Thrashing
	Thrashing (Cont.)
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-Set Model
	Working-set model
	Keeping Track of the Working Set
	Page-Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Memory-Mapped Files
	Memory Mapped Files
	Memory-Mapped Shared Memory�in Windows
	Memory-Mapped Files in Java
	Allocating Kernel Memory
	Buddy System
	Buddy System Allocator
	Slab Allocator
	Slab Allocation
	Other Issues -- Prepaging
	Other Issues – Page Size
	Other Issues – TLB Reach
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Reason Why Frames Used For I/O�Must Be In Memory
	Operating System Examples
	Windows XP
	Solaris
	Solaris 2 Page Scanner
	End of Chapter 9

