
12C H A P T E R

I/O Systems

Practice Exercises

12.1 State three advantages of placing functionality in a device controller,
rather than in the kernel. State three disadvantages.
Answer:
Three advantages:

a. Bugs are less likely to cause an operating system crash

b. Performance can be improved by utilizing dedicated hardware
and hard-coded algorithms

c. The kernel is simplified by moving algorithms out of it

Three disadvantages:
a. Bugs are harder to fix—a new firmware version or new hardware

is needed

b. Improving algorithms likewise require a hardware update rather
than just a kernel or device-driver update

c. Embedded algorithms could conflict with application’s use of the
device, causing decreased performance.

12.2 The example of handshaking in Section 13.2 used 2 bits: a busy bit and a
command-ready bit. Is it possible to implement this handshaking with
only 1 bit? If it is, describe the protocol. If it is not, explain why 1 bit is
insufficient.
Answer:
It is possible, using the following algorithm. Let’s assume we simply
use the busy-bit (or the command-ready bit; this answer is the same
regardless). When the bit is off, the controller is idle. The host writes
to data-out and sets the bit to signal that an operation is ready (the
equivalent of setting the command-ready bit). When the controller is
finished, it clears the busy bit. The host then initiates the next operation.
This solution requires that both the host and the controller have read
and write access to the same bit, which can complicate circuitry and
increase the cost of the controller.

41



42 Chapter 12 I/O Systems

12.3 Why might a system use interrupt-driven I/O to manage a single serial
port and polling I/O to manage a front-end processor, such as a terminal
concentrator?
Answer:
Polling can be more efficient than interrupt-driven I/O. This is the case
when the I/O is frequent and of short duration. Even though a single
serial port will perform I/O relatively infrequently and should thus
use interrupts, a collection of serial ports such as those in a terminal
concentrator can produce a lot of short I/O operations, and interrupting
for each one could create a heavy load on the system. A well-timed
polling loop could alleviate that load without wasting many resources
through looping with no I/O needed.

12.4 Polling for an I/O completion can waste a large number of CPU cycles
if the processor iterates a busy-waiting loop many times before the I/O
completes. But if the I/O device is ready for service, polling can be much
more efficient than is catching and dispatching an interrupt. Describe
a hybrid strategy that combines polling, sleeping, and interrupts for
I/O device service. For each of these three strategies (pure polling, pure
interrupts, hybrid), describe a computing environment in which that
strategy is more efficient than is either of the others.
Answer:
A hybrid approach could switch between polling and interrupts
depending on the length of the I/O operation wait. For example, we
could poll and loop N times, and if the device is still busy at N+1,
we could set an interrupt and sleep. This approach would avoid long
busy-waiting cycles. This method would be best for very long or very
short busy times. It would be inefficient it the I/O completes at N+T
(where T is a small number of cycles) due to the overhead of polling
plus setting up and catching interrupts.

Pure polling is best with very short wait times. Interrupts are best
with known long wait times.

12.5 How does DMA increase system concurrency? How does it complicate
hardware design?
Answer:
DMA increases system concurrency by allowing the CPU to perform
tasks while the DMA system transfers data via the system and memory
buses. Hardware design is complicated because the DMA controller
must be integrated into the system, and the system must allow the
DMA controller to be a bus master. Cycle stealing may also be necessary
to allow the CPU and DMA controller to share use of the memory bus.

12.6 Why is it important to scale up system-bus and device speeds as CPU
speed increases?
Answer:
Consider a system which performs 50% I/O and 50% computes.
Doubling the CPU performance on this system would increase total
system performance by only 50%. Doubling both system aspects would
increase performance by 100%. Generally, it is important to remove the
current system bottleneck, and to increase overall system performance,



Practice Exercises 43

rather than blindly increasing the performance of individual system
components.

12.7 Distinguish between a STREAMS driver and a STREAMS module.
Answer:
The STREAMS driver controls a physical device that could be involved
in a STREAMS operation. The STREAMS module modifies the flow of
data between the head (the user interface) and the driver.




