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Objectives 

 To introduce CPU scheduling, which is the basis for 
multiprogrammed operating systems 

 To describe various CPU-scheduling algorithms 
 To discuss evaluation criteria for selecting a CPU-scheduling 

algorithm for a particular system 
 To examine the scheduling algorithms of several operating 

systems 
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Basic Concepts 

 Maximum CPU utilization 
obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process 
execution consists of a cycle of 
CPU execution and I/O wait 

 CPU burst followed by I/O burst 
 CPU burst distribution is of main 

concern 
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Histogram of CPU-burst Times 
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CPU Scheduler 

 Short-term scheduler selects from among the processes in 
ready queue, and allocates the CPU to one of them 
 Queue may be ordered in various ways 

 CPU scheduling decisions may take place when a process: 
1. Switches from running to waiting state 
2. Switches from running to ready state 
3. Switches from waiting to ready 
4. Terminates 

 Scheduling under 1 and 4 is nonpreemptive 
 All other scheduling is preemptive 

 Consider access to shared data 
 Consider preemption while in kernel mode 
 Consider interrupts occurring during crucial OS activities 
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Dispatcher 

 Dispatcher module gives control of the CPU to the process 
selected by the short-term scheduler; this involves: 
 switching context 
 switching to user mode 
 jumping to the proper location in the user program to 

restart that program 
 Dispatch latency – time it takes for the dispatcher to stop 

one process and start another running 
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Scheduling Criteria 

 CPU utilization – keep the CPU as busy as possible 
 Throughput – # of processes that complete their execution per 

time unit 
 Turnaround time – amount of time to execute a particular 

process 
 Waiting time – amount of time a process has been waiting in the 

ready queue 
 Response time – amount of time it takes from when a request 

was submitted until the first response is produced, not output  (for 
time-sharing environment) 
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Scheduling Algorithm Optimization Criteria 

 Max CPU utilization 
 Max throughput 
 Min turnaround time  
 Min waiting time  
 Min response time 
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First- Come, First-Served (FCFS) Scheduling 

  Process Burst Time  
   P1 24 
   P2  3 
   P3  3  

 Suppose that the processes arrive in the order: P1 , P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 
 

 
 Waiting time for P1  = 0; P2  = 24; P3 = 27 
 Average waiting time:  (0 + 24 + 27)/3 = 17 

P P P1 2 3

0 24 3027
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FCFS Scheduling (Cont.) 

Suppose that the processes arrive in the order: 
   P2 , P3 , P1  
 The Gantt chart for the schedule is: 

 
 
 

 
 Waiting time for P1 = 6; P2 = 0; P3 = 3 
 Average waiting time:   (6 + 0 + 3)/3 = 3 
 Much better than previous case 
 Convoy effect - short process behind long process 

 Consider one CPU-bound and many I/O-bound processes 

P1

0 3 6 30

P2 P3
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Shortest-Job-First (SJF) Scheduling 

 Associate with each process the length of its next CPU burst 
  Use these lengths to schedule the process with the shortest 

time 
 SJF is optimal – gives minimum average waiting time for a given 

set of processes 
 The difficulty is knowing the length of the next CPU request 
 Could ask the user 
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Example of SJF 

                       ProcessArrival Time Burst Time 
               P1 0.0 6 
              P2  2.0 8 
              P3 4.0 7 
              P4 5.0 3 
 
 SJF scheduling chart 

 
 
 

 
 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 

P3

0 3 24

P4 P1

169

P2
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Determining Length of Next CPU Burst 

 Can only estimate the length – should be similar to the previous one 
 Then pick process with shortest predicted next CPU burst 

 
 Can be done by using the length of previous CPU bursts, using 

exponential averaging 
 
 
 

 
 Commonly, α set to ½ 
 Preemptive version called shortest-remaining-time-first 
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Prediction of the Length of the Next CPU Burst 
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Examples of Exponential Averaging 

 α =0 
 τn+1 = τn 

 Recent history does not count 
 α =1 

  τn+1 = α tn 

 Only the actual last CPU burst counts 
 If we expand the formula, we get: 

τn+1 = α tn+(1 - α)α tn -1 + … 
            +(1 - α )j α tn -j + … 
            +(1 - α )n +1 τ0 

 

 Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor 
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Example of Shortest-remaining-time-first 

 Now we add the concepts of varying arrival times and preemption to 
the analysis 

           ProcessAarri Arrival TimeT Burst Time 
   P1 0 8 
   P2  1 4 
   P3 2 9 
   P4 3 5 
 Preemptive SJF Gantt Chart 

 
 

 
 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 

msec 
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Priority Scheduling 

 A priority number (integer) is associated with each process 
 

 The CPU is allocated to the process with the highest priority 
(smallest integer ≡ highest priority) 
 Preemptive 
 Nonpreemptive 

 

 SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time 
 

 Problem ≡ Starvation – low priority processes may never execute 
 

 Solution ≡ Aging – as time progresses increase the priority of the 
process 
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Example of Priority Scheduling 

           ProcessA arri Burst TimeT Priority 
   P1 10 3 
   P2  1 1 
   P3 2 4 
   P4 1 5 
  P5 5 2 
 

 Priority scheduling Gantt Chart 
 
 
 

 
 Average waiting time = 8.2 msec 

1
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Round Robin (RR) 

 Each process gets a small unit of CPU time (time quantum q), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue. 

 If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time in 
chunks of at most q time units at once.  No process waits more 
than (n-1)q time units. 

 Timer interrupts every quantum to schedule next process 
 Performance 

 q large ⇒ FIFO 
 q small ⇒ q must be large with respect to context switch, 

otherwise overhead is too high 
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Example of RR with Time Quantum = 4 

  Process Burst Time 
  P1 24 
   P2  3 
   P3 3  
 The Gantt chart is:  

 
 
 
 
 
 

 Typically, higher average turnaround than SJF, but better 
response 

 q should be large compared to context switch time 
 q usually 10ms to 100ms, context switch < 10 usec 

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1
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Time Quantum and Context Switch Time 
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Turnaround Time Varies With The Time Quantum 

80% of CPU bursts 
should be shorter than q 
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Multilevel Queue 

 Ready queue is partitioned into separate queues, eg: 
 foreground (interactive) 
 background (batch) 

 Process permanently in a given queue 

 Each queue has its own scheduling algorithm: 
 foreground – RR 
 background – FCFS 

 Scheduling must be done between the queues: 
 Fixed priority scheduling; (i.e., serve all from foreground then 

from background).  Possibility of starvation. 
 Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR 

 20% to background in FCFS  
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Multilevel Queue Scheduling 
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Multilevel Feedback Queue 

 A process can move between the various queues; aging can be 
implemented this way 

 Multilevel-feedback-queue scheduler defined by the following 
parameters: 
 number of queues 
 scheduling algorithms for each queue 
 method used to determine when to upgrade a process 
 method used to determine when to demote a process 
 method used to determine which queue a process will enter 

when that process needs service 
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Example of Multilevel Feedback Queue 

 Three queues:  
 Q0 – RR with time quantum 8 

milliseconds 
 Q1 – RR time quantum 16 milliseconds 
 Q2 – FCFS 

 

 Scheduling 
 A new job enters queue Q0 which is 

served FCFS 
 When it gains CPU, job receives 8 

milliseconds 
 If it does not finish in 8 

milliseconds, job is moved to 
queue Q1 

 At Q1 job is again served FCFS and 
receives 16 additional milliseconds 
 If it still does not complete, it is 

preempted and moved to queue Q2 
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Thread Scheduling 

 Distinction between user-level and kernel-level threads 
 When threads supported, threads scheduled, not processes 
 Many-to-one and many-to-many models, thread library schedules 

user-level threads to run on LWP 
 Known as process-contention scope (PCS) since scheduling 

competition is within the process 
 Typically done via priority set by programmer 

 Kernel thread scheduled onto available CPU is system-contention 
scope (SCS) – competition among all threads in system 
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Pthread Scheduling 

 API allows specifying either PCS or SCS during thread creation 
 PTHREAD_SCOPE_PROCESS schedules threads using 

PCS scheduling 
 PTHREAD_SCOPE_SYSTEM schedules threads using 

SCS scheduling 
 Can be limited by OS – Linux and Mac OS X only allow 

PTHREAD_SCOPE_SYSTEM 
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Pthread Scheduling API 
#include <pthread.h>  

#include <stdio.h>  

#define NUM_THREADS 5  

int main(int argc, char *argv[]) {  

   int i, scope; 
   pthread_t tid[NUM THREADS];  

   pthread_attr_t attr;  

   /* get the default attributes */  

   pthread_attr_init(&attr);  

   /* first inquire on the current scope */ 
   if (pthread_attr_getscope(&attr, &scope) != 0)  

      fprintf(stderr, "Unable to get scheduling scope\n");  

   else {  

      if (scope == PTHREAD_SCOPE_PROCESS)  

         printf("PTHREAD_SCOPE_PROCESS");  

      else if (scope == PTHREAD_SCOPE_SYSTEM)  

         printf("PTHREAD_SCOPE_SYSTEM");  

      else 
         fprintf(stderr, "Illegal scope value.\n");  

   }  
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Pthread Scheduling API 

   /* set the scheduling algorithm to PCS or SCS */  

   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);  

   /* create the threads */ 
   for (i = 0; i < NUM_THREADS; i++)  

      pthread_create(&tid[i],&attr,runner,NULL);  

   /* now join on each thread */ 
   for (i = 0; i < NUM_THREADS; i++)  

      pthread_join(tid[i], NULL);  

}  

/* Each thread will begin control in this function */  

void *runner(void *param) 
{  

   /* do some work ... */  

   pthread_exit(0);  

}  
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Multiple-Processor Scheduling 

 CPU scheduling more complex when multiple CPUs are 
available 

 Homogeneous processors within a multiprocessor 

 Asymmetric multiprocessing – only one processor accesses 
the system data structures, alleviating the need for data sharing 

 Symmetric multiprocessing (SMP) – each processor is self-
scheduling, all processes in common ready queue, or each has 
its own private queue of ready processes 
 Currently, most common 

 Processor affinity – process has affinity for processor on which 
it is currently running 
 soft affinity 
 hard affinity 
 Variations including processor sets 
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NUMA and CPU Scheduling 

Note that memory-placement algorithms can also consider affinity 
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Multiple-Processor Scheduling – Load Balancing 

 If SMP, need to keep all CPUs loaded for efficiency 
 Load balancing attempts to keep workload evenly distributed 
 Push migration – periodic task checks load on each processor, 

and if found pushes task from overloaded CPU to other CPUs 
 Pull migration – idle processors pulls waiting task from busy 

processor 
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Multicore Processors 

 Recent trend to place multiple processor cores on same 
physical chip 

 Faster and consumes less power 
 Multiple threads per core also growing 

 Takes advantage of memory stall to make progress on 
another thread while memory retrieve happens 
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Multithreaded Multicore System 
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Real-Time CPU Scheduling 

 Can present obvious 
challenges 

 Soft real-time systems – no 
guarantee as to when critical 
real-time process will be 
scheduled 

 Hard real-time systems – 
task must be serviced by its 
deadline 

 Two types of latencies affect 
performance 

1. Interrupt latency – time from 
arrival of interrupt to start of 
routine that services interrupt 

2. Dispatch latency – time for 
schedule to take current process 
off CPU and switch to another 
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Real-Time CPU Scheduling (Cont.) 

 Conflict phase of 
dispatch latency: 

1. Preemption of 
any process 
running in kernel 
mode 

2. Release by low-
priority process 
of resources 
needed by high-
priority 
processes 
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Priority-based Scheduling 

 For real-time scheduling, scheduler must support preemptive, priority-
based scheduling 
 But only guarantees soft real-time 

 For hard real-time must also provide ability to meet deadlines 
 Processes have new characteristics: periodic ones require CPU at 

constant intervals 
 Has processing time t, deadline d, period p 
 0 ≤ t ≤ d ≤ p 
 Rate of periodic task is 1/p 
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Virtualization and Scheduling 

 Virtualization software schedules multiple guests onto 
CPU(s) 

 Each guest doing its own scheduling 
 Not knowing it doesn’t own the CPUs 
 Can result in poor response time 
 Can effect time-of-day clocks in guests 

 Can undo good scheduling algorithm efforts of guests 
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Rate Montonic Scheduling 

 A priority is assigned based on the inverse of its period 
 

 Shorter periods = higher priority; 
 

 Longer periods = lower priority 
 

 P1 is assigned a higher priority than P2. 
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Missed Deadlines with Rate Monotonic Scheduling 
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Earliest Deadline First Scheduling (EDF) 

 Priorities are assigned according to deadlines: 
 
the earlier the deadline, the higher the priority; 

 the later the deadline, the lower the priority 
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Proportional Share Scheduling 

 T shares are allocated among all processes in the system 
 

 An application receives N shares where N < T 
 

 This ensures each application will receive N / T of the total 
processor time 
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POSIX Real-Time Scheduling 

 The POSIX.1b standard 
 API provides functions for managing real-time threads 
 Defines two scheduling classes for real-time threads: 

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a 
FIFO queue. There is no time-slicing for threads of equal priority 

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for 
threads of equal priority 

 Defines two functions for getting and setting scheduling policy: 
1. pthread_attr_getsched_policy(pthread_attr_t *attr, 

int *policy)  

2. pthread_attr_setsched_policy(pthread_attr_t *attr, 
int policy)  
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POSIX Real-Time Scheduling API 
#include <pthread.h>  

#include <stdio.h>  

#define NUM_THREADS 5  

int main(int argc, char *argv[])  

{  

   int i, policy; 
   pthread_t_tid[NUM_THREADS];  

   pthread_attr_t attr;  

   /* get the default attributes */  

   pthread_attr_init(&attr);  

   /* get the current scheduling policy */ 
   if (pthread_attr_getschedpolicy(&attr, &policy) != 0)  

      fprintf(stderr, "Unable to get policy.\n");  

   else {  

      if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");  

      else if (policy == SCHED_RR) printf("SCHED_RR\n");  

      else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");  

   }  



6.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

POSIX Real-Time Scheduling API (Cont.) 

   /* set the scheduling policy - FIFO, RR, or OTHER */  
   if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)  

      fprintf(stderr, "Unable to set policy.\n");  

   /* create the threads */ 
   for (i = 0; i < NUM_THREADS; i++)  

      pthread_create(&tid[i],&attr,runner,NULL);  

   /* now join on each thread */ 
   for (i = 0; i < NUM_THREADS; i++)  

      pthread_join(tid[i], NULL);  

} 

  

/* Each thread will begin control in this function */  

void *runner(void *param) 
{  

   /* do some work ... */  

   pthread_exit(0);  

}  
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Operating System Examples 

 
 Linux scheduling 

 
 Windows scheduling 

 
 Solaris scheduling 
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Linux Scheduling Through Version 2.5 

 Prior to kernel version 2.5, ran variation of standard UNIX 
scheduling algorithm 

 Version 2.5 moved to constant order O(1) scheduling time 
 Preemptive, priority based 
 Two priority ranges: time-sharing and real-time 
 Real-time range from 0 to 99 and nice value from 100 to 140 
 Map into  global priority with numerically lower values indicating higher 

priority 
 Higher priority gets larger q 
 Task run-able as long as time left in time slice (active) 
 If no time left (expired), not run-able until all other tasks use their slices 
 All run-able tasks tracked in per-CPU runqueue data structure 

 Two priority arrays (active, expired) 
 Tasks indexed by priority 
 When no more active, arrays are exchanged 

 Worked well, but poor response times for interactive processes 
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Linux Scheduling in Version 2.6.23 + 

 Completely Fair Scheduler (CFS) 
 Scheduling classes 

 Each has specific priority 
 Scheduler picks highest priority task in highest scheduling class 
 Rather than quantum based on fixed time allotments, based on proportion of CPU 

time 
 2 scheduling classes included, others can be added 

1. default 
2. real-time 

 Quantum calculated based on nice value from -20 to +19 
 Lower value is higher priority 
 Calculates target latency – interval of time during which task should run at least 

once 
 Target latency can increase if say number of active tasks increases 

 CFS scheduler maintains per task virtual run time in variable vruntime 
 Associated with decay factor based on priority of task – lower priority is higher 

decay rate 
 Normal default priority yields virtual run time = actual run time 

 To decide next task to run, scheduler picks task with lowest virtual run time 
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CFS Performance 
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Linux Scheduling (Cont.) 

 Real-time scheduling according to POSIX.1b 
 Real-time tasks have static priorities 

 Real-time plus normal map into global priority scheme 
 Nice value of -20 maps to global priority 100 
 Nice value of +19 maps to priority 139 
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Windows Scheduling 

 Windows uses priority-based preemptive scheduling 
 Highest-priority thread runs next 
 Dispatcher is scheduler 
 Thread runs until (1) blocks, (2) uses time slice, (3) 

preempted by higher-priority thread 
 Real-time threads can preempt non-real-time 
 32-level priority scheme 
 Variable class is 1-15, real-time class is 16-31 
 Priority 0 is memory-management thread 
 Queue for each priority 
 If no run-able thread, runs idle thread 
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Windows Priority Classes 

 Win32 API identifies several priority classes to which a process can belong 
 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS 

 All are variable except REALTIME 

 A thread within a given priority class has a relative priority 
 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL, 

LOWEST, IDLE 

 Priority class and relative priority combine to give numeric priority 
 Base priority is NORMAL within the class 
 If quantum expires, priority lowered, but never below base 
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Windows Priority Classes (Cont.) 
 

 If wait occurs, priority boosted depending on what was waited for 
 Foreground window given 3x priority boost 
 Windows 7 added user-mode scheduling (UMS)  

 Applications create and manage threads independent of kernel 
 For large number of threads, much more efficient 
 UMS schedulers come from programming language libraries like                                         

C++ Concurrent Runtime (ConcRT) framework 
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Windows Priorities 
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Solaris 

 Priority-based scheduling 
 Six classes available 

 Time sharing (default) (TS) 
 Interactive (IA) 
 Real time (RT) 
 System (SYS) 
 Fair Share (FSS) 
 Fixed priority (FP) 

 Given thread can be in one class at a time 
 Each class has its own scheduling algorithm 
 Time sharing is multi-level feedback queue 

 Loadable table configurable by sysadmin 
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Solaris Dispatch Table  
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Solaris Scheduling 
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Solaris Scheduling (Cont.) 

 Scheduler converts class-specific priorities into a per-thread global 
priority 
 Thread with highest priority runs next 
 Runs until (1) blocks, (2) uses time slice, (3) preempted by 

higher-priority thread 
 Multiple threads at same priority selected via RR 
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Algorithm Evaluation 

 How to select CPU-scheduling algorithm for an OS? 
 Determine criteria, then evaluate algorithms 
 Deterministic modeling 

 Type of analytic evaluation 
 Takes a particular predetermined workload and defines the 

performance of each algorithm  for that workload 
 Consider 5 processes arriving at time 0: 
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Deterministic Evaluation 

 For each algorithm, calculate minimum average waiting time 
 Simple and fast, but requires exact numbers for input, applies only to 

those inputs 
 FCS is 28ms: 

 
 

 Non-preemptive SFJ is 13ms: 
 

 
 RR is 23ms: 

 



6.63 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Queueing Models 

 Describes the arrival of processes, and CPU and I/O bursts 
probabilistically 
 Commonly exponential, and described by mean 
 Computes average throughput, utilization, waiting time, etc 

 Computer system described as network of servers, each with 
queue of waiting processes 
 Knowing arrival rates and service rates 
 Computes utilization, average queue length, average wait 

time, etc 
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Little’s Formula 

 n = average queue length 
 W = average waiting time in queue 
 λ = average arrival rate into queue 
 Little’s law – in steady state, processes leaving queue must equal 

processes arriving, thus: 
      n = λ x W 
 Valid for any scheduling algorithm and arrival distribution 

 For example, if on average 7 processes arrive per second, and 
normally 14 processes in queue, then average wait time per 
process = 2 seconds 
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Simulations 

 Queueing models limited 
 Simulations more accurate 

 Programmed model of computer system 
 Clock is a variable 
 Gather statistics  indicating algorithm performance 
 Data to drive simulation gathered via 

 Random number generator according to probabilities 
 Distributions defined mathematically or empirically 
 Trace tapes record sequences of real events in real systems 
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Evaluation of CPU Schedulers by Simulation 
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Implementation 

 Even simulations have limited accuracy 
 Just implement new scheduler and test in real systems 

 High cost, high risk 
 Environments vary 

 Most flexible schedulers can be modified per-site or per-system 
 Or APIs to modify priorities 
 But again environments vary 
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End of Chapter 6 
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