Chapter 13: Protection

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013



G Chapter 13: Protection

Goals of Protection

Principles of Protection

Domain of Protection

Access Matrix

Implementation of Access Matrix
Access Control

Revocation of Access Rights
Capability-Based Systems

Language-Based Protection

\
WA Y

o™ ]
g

ol

Operating System Concepts Essentials — 2" Edition 13.2 Silberschatz, Galvin and Gagne ©2013



gF Objectives

m Discuss the goals and principles of protection in a modern
computer system

m Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

B Examine capability and language-based protection systems

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.3



BN

s

. 1
"G F Goals of Protection

® In one protection model, computer consists of a collection of
objects, hardware or software

m Each object has a unigue name and can be accessed through
a well-defined set of operations

® Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

Operating System Concepts Essentials — 2" Edition 13.4 Silberschatz, Galvin and Gagne ©2013




ﬂ%;’"“* Principles of Protection

®  Guiding principle — principle of least privilege

e Programs, users and systems should be given just
enough privileges to perform their tasks

e Limits damage if entity has a bug, gets abused

e Can be static (during life of system, during life of
process)

e Or dynamic (changed by process as needed) — domain
switching, privilege escalation

e “Need to know” a similar concept regarding access to
data

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.5



=

4"7"‘#”"'1, )
it %}r r

Principles of Protection (Cont.)

m Must consider “grain” aspect

e Rough-grained privilege management easier, simpler,
but least privilege now done in large chunks

» For example, traditional Unix processes either have
abilities of the associated user, or of root

e Fine-grained management more complex, more
overhead, but more protective

» File ACL lists, RBAC
® Domain can be user, process, procedure

Operating System Concepts Essentials — 2" Edition 13.6 Silberschatz, Galvin and Gagne ©2013



G Domain Structure

m Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

®m Domain = set of access-rights

< O, {read, write} >
< Oy, {read, write} >
< O,, {execute} >

Operating System Concepts Essentials — 2"d Edition 13.7 Silberschatz, Galvin and Gagne ©2013




]

1-.-:;

,;;:.i Domain Implementation (UNIX)

®m Domain = user-id
® Domain switch accomplished via file system
» Each file has associated with it a domain bit (setuid bit)

» When file is executed and setuid = on, then user-id is
set to owner of the file being executed

» When execution completes user-id is reset
® Domain switch accomplished via passwords

e su command temporarily switches to another user’ s
domain when other domain’ s password provided

® Domain switching via commands

e sudo command prefix executes specified command in
another domain (if original domain has privilege or
password given)

F - .I-' e ¥ v: Ll '..'I.. ‘
= R
o '%;r-('

A%

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.8



=

%  Domain Implementation (MULTICS)

m Let D;and D;be any two domain rings
m Ifj<l=D; D,

ring O

ring 1

ring N—1

. .'-‘."“""-\
L5

w

“

Operating System Concepts Essentials — 2"d Edition 13.9 Silberschatz, Galvin and Gagne ©2013




A
¥

g - : ' I
S S Multics Benefits and Limits

B Ring / hierarchical structure provided more than the basic
kernel / user or root / normal user design

Fairly complex -> more overhead
But does not allow strict need-to-know
e Object accessible in D; but not in D;, then j must be <

e But then every segment accessible in D, also
accessible in D;

Operating System Concepts Essentials — 2" Edition 13.10 Silberschatz, Galvin and Gagne ©2013



G5 Access Matrix

View protection as a matrix (access matrix)
Rows represent domains
Columns represent objects

Access(i1, J) isthe set of operations that a process
executing in Domain; can invoke on Object,

object
_ F, Fs F; printer
domain
D, read read
D, print
D, read execute
D read read
4 write write

Operating System Concepts Essentials — 2" Edition 13.11 Silberschatz, Galvin and Gagne ©2013



¥

N

s,

o "'?'-"?'.\-1

. L Use of Access Matrix

® If a process in Domain D; tries to do “op” on object O,, then
“op” must be in the access matrix

m User who creates object can define access column for that
object

m Can be expanded to dynamic protection

e OQOperations to add, delete access rights

e Special access rights:
» owner of O,
» copy op from O; to O, (denoted by ™)
» control — D; can modify D; access rights
» transfer — switch from domain D; to D;

e Copy and Owner applicable to an object

e Control applicable to domain object

\

- T
- “ »
N
L
i

e o
W
\

A

Operating System Concepts Essentials — 2" Edition 13.12 Silberschatz, Galvin and Gagne ©2013




=1,

™ .
G Use of Access Matrix (Cont.)

B Access matrix design separates mechanism from policy
e Mechanism
» Operating system provides access-matrix + rules

» If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced

e Policy
» User dictates policy
» Who can access what object and in what mode
m But doesn’ t solve the general confinement problem

Operating System Concepts Essentials — 2" Edition 13.13 Silberschatz, Galvin and Gagne ©2013



e

!';r

Access Matrix of Figure A with Domains as Objects

object
£ £ E laser D. D, D, D,
domain printer
D, read read switch
D, print switch | switch
D, read |execute
D rea_ld rea_ld switeh
4 write write
Operating System Concepts Essentials — 24 Edition 13.14 Silberschatz, Galvin and Gagne ©2013



| "

i

Access Matrix with Copy Rights

object
F F, Fs
domain
D, execute write*
D, execute read” execute
D, execute
(a)
object
F, F, Fy
domain
D, execute write*
D, execute read” execute
D, execute read
(b)
13.15

Operating System Concepts Essentials — 2" Edition

Silberschatz, Galvin and Gagne ©2013



Ry

™

f«w—/ Access Matrix With Owner Rights

object
F F, F
domain

D owner .
! execute write
- read™
0 pad | oune
write

D, execute
(a)
object
_ F F; F;
domain

D owner ,
! execute write
owner read™
D, read* owner
write* write
D, write write

(b}
Operating System Concepts Essentials — 2" Edition 13.16

Silberschatz, Galvin and Gagne ©2013



Ry

-

{Jﬁ Modified Access Matrix of Figure B

object
: E |l el & |2 b | B, | B, | B
domain printer
D, read read switch
. . switch

D, print switch | 20
D, read |execute
D, write write switch

LSRN

= e
A9

L

Operating System Concepts Essentials — 2" Edition 13.17 Silberschatz, Galvin and Gagne ©2013



J—/ Implementation of Access Matrix

m Generally, a sparse matrix
m Option 1 — Global table

e Store ordered triples <domain, object,
rights-set> intable

e Arequested operation M on object O; within domain
D; -> search table for < D;, O;, R >

» with M € R,
e But table could be large -> won’ t fit in main memory

e Difficult to group objects (consider an object that all
domains can read)

Operating System Concepts Essentials — 2" Edition 13.18 Silberschatz, Galvin and Gagne ©2013




=1,

| fml . - I
«$»’ Implementation of Access Matrix (Cont.)

4

m Option 2 — Access lists for objects

e Each column implemented as an access list for one
object

e Resulting per-object list consists of ordered pairs
<domain, rights-set> defining all domains with

non-empty set of access rights for the object

e Easily extended to contain default set -> If M € default
set, also allow access

Operating System Concepts Essentials — 2" Edition 13.19 Silberschatz, Galvin and Gagne ©2013



«§% Implementation of Access Matrix (Cont.)

B Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

m Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 — Read
Object F4 — Read, Write, Execute
Object F5 — Read, Write, Delete, Copy

Operating System Concepts Essentials — 2" Edition 13.20 Silberschatz, Galvin and Gagne ©2013



=

- ,f.-ww»l ) 1 .
«$»/ Implementation of Access Matrix (Cont.)

m  Option 3 — Capability list for domains
e Instead of object-based, list is domain based

e Capability list for domain is list of objects together with operations
allows on them

e Object represented by its name or address, called a capability

e Execute operation M on object O;, process requests operation and
specifies capability as parameter

» Possession of capability means access is allowed

e Capability list associated with domain but never directly accessible
by domain

» Rather, protected object, maintained by OS and accessed
indirectly

» Like a “secure pointer”
» Idea can be extended up to applications

Operating System Concepts Essentials — 2" Edition 13.21 Silberschatz, Galvin and Gagne ©2013




A

«

i -‘!"'VJ

“3”" Implementation of Access Matrix (Cont.)

m Option 4 — Lock-key
e Compromise between access lists and capability lists
e Each object has list of unique bit patterns, called locks
e Each domain as list of unique bit patterns called keys

e Process in a domain can only access object if domain
has key that matches one of the locks

Operating System Concepts Essentials — 2" Edition 13.22 Silberschatz, Galvin and Gagne ©2013




o

1-1:;

,r"'?"-’"?'rj

7 Comparison of Implementations

® Many trade-offs to consider
e Global table is simple, but can be large
e Access lists correspond to needs of users

» Determining set of access rights for domain non-
localized so difficult

» Every access to an object must be checked
Many objects and access rights -> slow

e Capalbility lists useful for localizing information for a given
process

» But revocation capabilities can be inefficient

e Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

SE
. ﬂ"%;; _\\\1
. ). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 13.23 Silberschatz, Galvin and Gagne ©2013



«$»/ Comparison of Implementations (Cont.)

m Most systems use combination of access lists and
capabilities

e First access to an object -> access list searched

» If allowed, capability created and attached to
process

Additional accesses need not be checked
» After last access, capability destroyed
» Consider file system with ACLs per file

Operating System Concepts Essentials — 2" Edition 13.24 Silberschatz, Galvin and Gagne ©2013



=

P Access Control

®m Protection can be applied to non-file

resources user 1
m Oracle Solaris 10 provides role- role 1
based access control (RBAC) to privileges 1

implement least privilege privileges 2

e Privilege is right to execute
system call or use an option |

within a system call executes with role 1 privileges
e Can be assigned to processes l

e Users assigned roles granting
access to privileges and
programs

» Enable role via password to
gain its privileges

e Similar to access matrix

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.25



=

| «ml ) . 1
g7 Revocation of Access Rights

®m Various options to remove the access right of a domain to an
object

e Immediate vs. delayed
e Selective vs. general
e Partial vs. total
e Temporary vs. permanent
m Access List — Delete access rights from access list
e Simple — search access list and remove entry

e Immediate, general or selective, total or partial,
permanent or temporary

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.26




=437  Revocation of Access Rights (Cont.)

m Capability List — Scheme required to locate capability in the
system before capability can be revoked

e Reacquisition — periodic delete, with require and denial if
revoked

e Back-pointers — set of pointers from each object to all
capabilities of that object (Multics)

e Indirection — capability points to global table entry which points
to object — delete entry from global table, not selective (CAL)

e Keys — unique bits associated with capability, generated when
capability created

» Master key associated with object, key matches master key
for access

» Revocation — create new master key

» Policy decision of who can create and modify keys — object
owner or others?

SE
o ‘i‘i‘;{'
AP0

Operating System Concepts Essentials — 2" Edition 13.27 Silberschatz, Galvin and Gagne ©2013




=

=
» "'?'-"?'.\-1

g7 Capability-Based Systems

® Hydra
e Fixed set of access rights known to and interpreted by the system
» i.e. read, write, or execute each memory segment

» User can declare other auxiliary rights and register those with
protection system

» Accessing process must hold capability and know name of
operation

» Rights amplification allowed by trustworthy procedures for a
specific type

e |Interpretation of user-defined rights performed solely by user's
program; system provides access protection for use of these rights

e Operations on objects defined procedurally — procedures are
objects accessed indirectly by capabilities

e Solves the problem of mutually suspicious subsystems
e Includes library of prewritten security routines

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.28



«¢¥7  Capability-Based Systems (Cont.)

m Cambridge CAP System
e Simpler but powerful

e Data capability - provides standard read, write, execute
of individual storage segments associated with object —
implemented in microcode

e Software capability -interpretation left to the
subsystem, through its protected procedures

» Only has access to its own subsystem

» Programmers must learn principles and techniques
of protection

Operating System Concepts Essentials — 2"d Edition 13.29 Silberschatz, Galvin and Gagne ©2013




_’h

o)

o Language-Based Protection

m Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

B Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

m [nterpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system

/‘»ﬂ -'\1

Operating System Concepts Essentials — 2" Edition 13.30 Silberschatz, Galvin and Gagne ©2013




—

V Protection in Java 2

Protection is handled by the Java Virtual Machine (JVM)

A class is assigned a protection domain when it is loaded by
the JVM

m The protection domain indicates what operations the class
can (and cannot) perform

m [f alibrary method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation can
be performed by the library

m Generally, Java’'s load-time and run-time checks enforce type
safety

m Classes effectively encapsulate and protect data and
methods from other classes

/‘»ﬂ -'\1

Operating System Concepts Essentials — 2" Edition 13.31 Silberschatz, Galvin and Gagne ©2013




T Stack Inspection

tecti .

g(r)omzﬁr:?n ;Bglﬁted URL loader networking

socket . " .80 ¢

permission: none .lucent.com:80, connec any

class: gui: get(URL u): open(Addr a):
get(url); doPrivileged { checkPermission
open(addr); open(‘proxy.lucent.com:80’); (a, connect);
" } connect (a);

<request u from proxy=> .

“

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2"d Edition 13.32



End of Chapter 13

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013



	Chapter 13:  Protection
	Chapter 13: Protection
	Objectives
	Goals of Protection
	Principles of Protection
	Principles of Protection (Cont.)
	Domain Structure
	Domain Implementation (UNIX)
	Domain Implementation (MULTICS)
	Multics Benefits and Limits
	Access Matrix
	Use of Access Matrix
	Use of Access Matrix (Cont.)
	Access Matrix of Figure A with Domains as Objects
	Access Matrix with Copy Rights
	Access Matrix With Owner Rights
	Modified Access Matrix of Figure B
	Implementation of Access Matrix
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Comparison of Implementations
	Comparison of Implementations (Cont.)
	Access Control
	Revocation of Access Rights
	Revocation of Access Rights (Cont.)
	Capability-Based Systems 
	Capability-Based Systems (Cont.) 
	Language-Based Protection
	Protection in Java 2
	Stack Inspection
	End of Chapter 13

