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Objectives 

 To present the concept of process synchronization. 
 To introduce the critical-section problem, whose solutions 

can be used to ensure the consistency of shared data 
 To present both software and hardware solutions of the 

critical-section problem 
 To examine several classical process-synchronization 

problems 
 To explore several tools that are used to solve process 

synchronization problems 
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Background 

 Processes can execute concurrently 
 May be interrupted at any time, partially completing 

execution 
 Concurrent access to shared data may result in data 

inconsistency 
 Maintaining data consistency requires mechanisms to ensure 

the orderly execution of cooperating processes 
 Illustration of the problem: 

Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. We can 
do so by having an integer counter that keeps track of the 
number of full buffers.  Initially, counter is set to 0. It is 
incremented by the producer after it produces a new buffer 
and is decremented by the consumer after it consumes a 
buffer. 
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Producer  

while (true) { 
 /* produce an item in next produced */  

  

 while (counter == BUFFER_SIZE) ;  

  /* do nothing */  

 buffer[in] = next_produced;  

 in = (in + 1) % BUFFER_SIZE;  

 counter++;  

}  
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Consumer 

while (true) { 

 while (counter == 0)  

  ; /* do nothing */  

 next_consumed = buffer[out];  

 out = (out + 1) % BUFFER_SIZE;   

        counter--;  

 /* consume the item in next consumed */  

}  
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Race Condition 

 counter++ could be implemented as 
 
     register1 = counter 
     register1 = register1 + 1 
     counter = register1 

 counter-- could be implemented as 
 
     register2 = counter 
     register2 = register2 - 1 
     counter = register2 

 

 Consider this execution interleaving with “count = 5” initially: 
 S0: producer execute register1 = counter         {register1 = 5} 

S1: producer execute register1 = register1 + 1   {register1 = 6}  
S2: consumer execute register2 = counter        {register2 = 5}  
S3: consumer execute register2 = register2 – 1  {register2 = 4}  
S4: producer execute counter = register1         {counter = 6 }  
S5: consumer execute counter = register2        {counter = 4} 
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Critical Section Problem 

 Consider system of n processes {p0, p1, … pn-1} 
 Each process has critical section segment of code 

 Process may be changing common variables, updating 
table, writing file, etc 

 When one process in critical section, no other may be in its 
critical section 

 Critical section problem is to design protocol to solve this 
 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section 
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Critical Section 

 General structure of process Pi   
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Algorithm for Process Pi 

 do {  

   

  while (turn == j);  
 

   critical section  

  turn = j;  
 

   remainder section  

  } while (true);  
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Solution to Critical-Section Problem 

1.   Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections 

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely 

3.  Bounded Waiting -  A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its critical 
section and before that request is granted 
 Assume that each process executes at a nonzero speed  
 No assumption concerning relative speed of the n 

processes 
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Critical-Section Handling in OS  

     Two approaches depending on if kernel is preemptive or non-  
preemptive  
 Preemptive – allows preemption of process when running 

in kernel mode 
 Non-preemptive – runs until exits kernel mode, blocks, or 

voluntarily yields CPU 
Essentially free of race conditions in kernel mode 
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Peterson’s Solution 

 Good algorithmic  description of solving the problem 

 Two process solution 

 Assume that the load and store machine-language 
instructions are atomic; that is, cannot be interrupted 

 The two processes share two variables: 
 int turn;  

 Boolean flag[2] 
 

 The variable turn indicates whose turn it is to enter the critical 
section 

 The flag array is used to indicate if a process is ready to enter 
the critical section. flag[i] = true  implies that process Pi is 
ready! 
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Algorithm for Process Pi 

 do {  
  flag[i] = true;  

  turn = j;  

  while (flag[j] && turn = = j);  

   critical section  

  flag[i] = false;  

   remainder section  

  } while (true);  
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Peterson’s Solution (Cont.) 

 Provable that the three  CS requirement are met: 
        1.   Mutual exclusion is preserved 

                Pi enters CS only if: 

                      either flag[j] = false or turn = i 

        2.   Progress requirement is satisfied 
        3.   Bounded-waiting requirement is met 
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Synchronization Hardware 

 Many systems provide hardware support for implementing the 
critical section code. 

 All solutions below based on idea of locking 
 Protecting critical regions via locks 

 Uniprocessors – could disable interrupts 
 Currently running code would execute without preemption 
 Generally too inefficient on multiprocessor systems 

 Operating systems using this not broadly scalable 
 Modern machines provide special atomic hardware instructions 

 Atomic = non-interruptible 
 Either test memory word and set value 
 Or swap contents of two memory words 
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Solution to Critical-section Problem Using Locks 

 do {  

  acquire lock  

   critical section  

  release lock  

   remainder section  

 } while (TRUE);  
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test_and_set  Instruction  
 
   Definition: 
       boolean test_and_set (boolean *target) 
          { 

               boolean rv = *target; 

               *target = TRUE; 

               return rv: 

          } 

1. Executed atomically 
2. Returns the original value of passed parameter 
3. Set the new value of passed parameter to “TRUE”. 
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Solution using test_and_set() 

 Shared Boolean variable lock, initialized to FALSE 
 Solution: 
       do { 
          while (test_and_set(&lock))  

             ; /* do nothing */  

                 /* critical section */  

          lock = false;  

                 /* remainder section */  

       } while (true);  
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compare_and_swap Instruction 
 
Definition: 
     int compare _and_swap(int *value, int expected, int new_value) {  

         int temp = *value;  

 

         if (*value == expected)  

            *value = new_value;  

      return temp;  

     }  

1. Executed atomically 
2. Returns the original value of passed parameter “value” 
3. Set  the variable “value”  the value of the passed parameter “new_value” 

but only if “value” ==“expected”. That is, the swap takes place only under 
this condition. 
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Solution using compare_and_swap 

 Shared integer  “lock”  initialized to 0;  
 Solution: 
      do { 

         while (compare_and_swap(&lock, 0, 1) != 0)  

            ; /* do nothing */  

          /* critical section */  

       lock = 0;  

          /* remainder section */  

      } while (true);  
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Bounded-waiting Mutual Exclusion with test_and_set 

do { 
   waiting[i] = true; 
   key = true; 
   while (waiting[i] && key)  

      key = test_and_set(&lock);  

   waiting[i] = false;  

   /* critical section */  

   j = (i + 1) % n;  

   while ((j != i) && !waiting[j])  

      j = (j + 1) % n;  

   if (j == i)  

      lock = false;  

   else  

      waiting[j] = false;  

   /* remainder section */  

} while (true);  
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Mutex Locks 

 Previous solutions are complicated and generally inaccessible 
to application programmers 

 OS designers build software tools to solve critical section 
problem 

 Simplest is mutex lock 
 Protect a critical section  by first acquire() a lock then 

release() the lock 
 Boolean variable indicating if lock is available or not 

 Calls to acquire() and release() must be atomic 
 Usually implemented via hardware atomic instructions 

 But this solution requires busy waiting 
 This lock therefore called a spinlock 
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acquire() and release() 

   acquire() { 
       while (!available)  

          ; /* busy wait */  

       available = false;;  

    }  

   release() {  

       available = true;  

    }  

   do {  

    acquire lock 

       critical section 

    release lock  

      remainder section  

 } while (true);  
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Semaphore 

 Synchronization tool that provides more sophisticated ways (than Mutex locks)  
for process to synchronize their activities. 

 Semaphore S – integer variable 
 Can only be accessed via two indivisible (atomic) operations 

 wait() and signal() 

 Originally called P() and V() 

 Definition of  the wait() operation 

wait(S) {  
    while (S <= 0) 

       ; // busy wait 

    S--; 

} 

 Definition of  the signal() operation 

signal(S) {  
    S++; 

} 
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Semaphore Usage 

 Counting semaphore – integer value can range over an unrestricted 
domain 

 Binary semaphore – integer value can range only between 0 and 1 
 Same as a mutex lock 

 Can solve various synchronization problems 
 Consider P1  and P2 that require S1 to happen before S2 

       Create a semaphore “synch” initialized to 0  
P1: 

   S1; 

   signal(synch); 

P2: 

   wait(synch); 

   S2; 

 Can implement a counting semaphore S as a binary semaphore 
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Semaphore Implementation 

 Must guarantee that no two processes can execute  the wait() 
and signal() on the same semaphore at the same time 

 Thus, the implementation becomes the critical section problem 
where the wait and signal code are placed in the critical 
section 
 Could now have busy waiting in critical section 

implementation 
 But implementation code is short 
 Little busy waiting if critical section rarely occupied 

 Note that applications may spend lots of time in critical sections 
and therefore this is not a good solution 
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Semaphore Implementation with no Busy waiting  

 With each semaphore there is an associated waiting queue 
 Each entry in a waiting queue has two data items: 

  value (of type integer) 
  pointer to next record in the list 

 Two operations: 
 block – place the process invoking the operation on the 

appropriate waiting queue 
 wakeup – remove one of processes in the waiting queue 

and place it in the ready queue 
 typedef struct{  

   int value;  

   struct process *list;  

   } semaphore;  
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Implementation with no Busy waiting (Cont.) 
 

wait(semaphore *S) {  

   S->value--;  

   if (S->value < 0) { 
      add this process to S->list;  

      block();  

   }  

} 

 

signal(semaphore *S) {  

   S->value++;  

   if (S->value <= 0) { 
      remove a process P from S->list;  

      wakeup(P);  

   }  

}  
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Deadlock and Starvation 

 Deadlock – two or more processes are waiting indefinitely for an 
event that can be caused by only one of the waiting processes 

 Let S and Q be two semaphores initialized to 1 
          P0                             P1 

           wait(S);                wait(Q); 

            wait(Q);                wait(S); 

   ...       ... 

            signal(S);                 signal(Q); 

              signal(Q);                 signal(S); 

 

 Starvation – indefinite blocking   
 A process may never be removed from the semaphore queue in which it is 

suspended 
 Priority Inversion – Scheduling problem when lower-priority process 

holds a lock needed by higher-priority process 
 Solved via priority-inheritance protocol 
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Classical Problems of Synchronization 

 Classical problems used to test newly-proposed synchronization 
schemes 
 Bounded-Buffer Problem 
 Readers and Writers Problem 
 Dining-Philosophers Problem 



5.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Bounded-Buffer Problem 

 n buffers, each can hold one item 

 Semaphore mutex initialized to the value 1 

 Semaphore full initialized to the value 0 

 Semaphore empty initialized to the value n 
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Bounded Buffer Problem (Cont.) 

 The structure of the producer process 
 

     do {  

          ... 
        /* produce an item in next_produced */  

          ...  

        wait(empty);  

        wait(mutex);  

           ... 
        /* add next produced to the buffer */  

           ...  

        signal(mutex);  

        signal(full);  

     } while (true); 
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Bounded Buffer Problem (Cont.) 

 The structure of the consumer process 
 

     Do {  

        wait(full);  

        wait(mutex);  

           ... 
        /* remove an item from buffer to next_consumed */  

           ...  

        signal(mutex);  

        signal(empty);  

           ... 
        /* consume the item in next consumed */  

           ... 
     } while (true);  
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Readers-Writers Problem 

 A data set is shared among a number of concurrent processes 
 Readers – only read the data set; they do not perform any updates 
 Writers   – can both read and write 

 Problem – allow multiple readers to read at the same time 
 Only one single writer can access the shared data at the same time 

 Several variations of how readers and writers are considered  – all 
involve some form of priorities 

 Shared Data 
 Data set 

 Semaphore rw_mutex initialized to 1 

 Semaphore mutex initialized to 1 

 Integer read_count initialized to 0 
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Readers-Writers Problem (Cont.) 

 The structure of a writer process 
         
       do { 

          wait(rw_mutex);  

               ... 
          /* writing is performed */  

               ...  

          signal(rw_mutex);  

     } while (true); 
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Readers-Writers Problem (Cont.) 
 The structure of a reader process 
       do { 

           wait(mutex); 
           read_count++; 
           if (read_count == 1)  

              wait(rw_mutex);  

           signal(mutex);  

               ... 
           /* reading is performed */  

               ...  

           wait(mutex); 
           read count--; 
           if (read_count == 0)  

           signal(rw_mutex);  

           signal(mutex);  

       } while (true); 
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Readers-Writers Problem Variations 

 First  variation – no reader kept waiting unless writer has 
permission to use shared object 

 Second variation – once writer is ready, it performs the 
write ASAP 

 Both may have starvation leading to even more variations 
 Problem is solved on some systems by kernel providing 

reader-writer locks 
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Dining-Philosophers Problem 

 Philosophers spend their lives alternating thinking and eating 
 Don’t interact with their neighbors, occasionally try to pick up 2 

chopsticks (one at a time) to eat from bowl 
 Need both to eat, then release both when done 

 In the case of 5 philosophers 
 Shared data  

 Bowl of rice (data set) 
 Semaphore chopstick [5] initialized to 1 
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  Dining-Philosophers Problem Algorithm 

 The structure of Philosopher i: 
do {  

    wait (chopstick[i] ); 

   wait (chopStick[ (i + 1) % 5] ); 

  

              //  eat 

 

   signal (chopstick[i] ); 

   signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think 

 
} while (TRUE); 

   What is the problem with this algorithm? 
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Dining-Philosophers Problem Algorithm (Cont.) 

 Deadlock handling 
  Allow at most 4 philosophers to be sitting 

simultaneously at  the table. 
  Allow a philosopher to pick up  the forks only if both 

are available (picking must be done in a critical 
section. 

  Use an asymmetric solution  -- an odd-numbered  
philosopher picks  up first the left chopstick and then 
the right chopstick. Even-numbered  philosopher picks  
up first the right chopstick and then the left chopstick.  
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Problems with Semaphores 

  Incorrect use of semaphore operations: 
 
  signal (mutex)  ….  wait (mutex) 

 
  wait (mutex)  …  wait (mutex) 

 
  Omitting  of wait (mutex) or signal (mutex) (or both) 

 
 Deadlock and starvation are possible. 
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Monitors 

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization 

 Abstract data type, internal variables only accessible by code within the 
procedure 

 Only one process may be active within the monitor at a time 
 But not powerful enough to model some synchronization schemes 

 
monitor monitor-name 
{ 
 // shared variable declarations 
 procedure P1 (…) { …. } 
 
 procedure Pn (…) {……} 
 
    Initialization code (…) { … } 
 } 
} 
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Schematic view of a Monitor 
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Condition Variables 

 condition x, y; 

 Two operations are allowed on a condition variable: 

 x.wait() –  a process that invokes the operation is 
suspended until x.signal()  

 x.signal() – resumes one of processes (if any) that  
invoked x.wait() 

 If no x.wait() on the variable, then it has no effect on 
the variable 
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 Monitor with Condition Variables 
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Condition Variables Choices 

 If process P invokes x.signal(), and process Q is suspended in 
x.wait(), what should happen next? 

 Both Q and P cannot execute in paralel. If Q is resumed, then P 
must wait 

 Options include 
 Signal and wait – P waits until Q either leaves the monitor or it 

waits for another condition 
 Signal and continue – Q waits until P either leaves the monitor or it  

waits for another condition 
 Both have pros and cons – language implementer can decide 
 Monitors implemented in Concurrent Pascal compromise 

 P executing signal immediately leaves the monitor, Q is 
resumed 

 Implemented in other languages including Mesa, C#, Java 
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Monitor Solution to Dining Philosophers 
monitor DiningPhilosophers 
{  
 enum { THINKING; HUNGRY, EATING) state [5] ; 
 condition self [5]; 
 
 void pickup (int i) {  
        state[i] = HUNGRY; 
        test(i); 
        if (state[i] != EATING) self[i].wait; 
} 
  
   void putdown (int i) {  
        state[i] = THINKING; 
                   // test left and right neighbors 
         test((i + 4) % 5); 
         test((i + 1) % 5); 
} 
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Solution to Dining Philosophers (Cont.) 
 
 void test (int i) {  
         if ((state[(i + 4) % 5] != EATING) && 
         (state[i] == HUNGRY) && 
         (state[(i + 1) % 5] != EATING) ) {  
              state[i] = EATING ; 
      self[i].signal () ; 
         } 
   } 
 
       initialization_code() {  
        for (int i = 0; i < 5; i++) 
        state[i] = THINKING; 
      } 
} 
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 Each philosopher i invokes the operations pickup() and 

putdown() in the following sequence: 
 

              DiningPhilosophers.pickup(i); 
 
                   EAT 
 

              DiningPhilosophers.putdown(i); 
 
 No deadlock, but starvation is possible 
 
 
        

Solution to Dining Philosophers (Cont.) 
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Monitor Implementation Using Semaphores 

 Variables  
 
  semaphore mutex;  // (initially  = 1) 
  semaphore next;   // (initially  = 0) 
  int next_count = 0; 

 
 Each procedure F  will be replaced by 

 
   wait(mutex); 
        …     
                    body of F; 
        … 
   if (next_count > 0) 
    signal(next) 
   else  
    signal(mutex); 

 
 Mutual exclusion within a monitor is ensured 
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Monitor Implementation – Condition Variables 

 For each condition variable x, we  have: 
 
  semaphore x_sem; // (initially  = 0) 
  int x_count = 0; 

 
 The operation x.wait can be implemented as: 
   
  x_count++; 
  if (next_count > 0) 
   signal(next); 
  else 
   signal(mutex); 
  wait(x_sem); 
  x_count--; 
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Monitor Implementation (Cont.) 

 The operation x.signal can be implemented as: 
 

  if (x_count > 0) { 
   next_count++; 
   signal(x_sem); 
   wait(next); 
   next_count--; 
  } 
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Resuming Processes within a Monitor 

 If several processes queued on condition x, and x.signal() 
executed, which should be resumed? 

 FCFS frequently not adequate  
 conditional-wait construct of the form x.wait(c) 

 Where c is priority number 
 Process with lowest number (highest priority) is 

scheduled next 
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 Allocate a single resource among competing processes using 

priority numbers that specify the maximum time a process  
plans to use the resource 

 

              R.acquire(t); 
                   ... 
                access the resurce; 
                   ... 
 

               R.release; 
 
 Where R is an instance of  type ResourceAllocator 
 
 
        

Single Resource allocation  
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A Monitor to Allocate Single Resource 
 
monitor ResourceAllocator  
{  
 boolean busy;  
 condition x;  
 void acquire(int time) {  
  if (busy)  
   x.wait(time);  
  busy = TRUE;  
 }  
 void release() {  
  busy = FALSE;  
  x.signal();  
 }  
initialization code() { 
  busy = FALSE;  
 } 
}    
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Synchronization Examples 

 Solaris 
 Windows 
 Linux 
 Pthreads 
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Solaris Synchronization 

 Implements a variety of locks to support multitasking, multithreading 
(including real-time threads), and multiprocessing 

 Uses adaptive mutexes for efficiency when protecting data from short 
code segments 
 Starts as a standard semaphore spin-lock 
 If lock held, and by a thread running on another CPU, spins 
 If lock held by non-run-state thread, block and sleep waiting for signal of 

lock being released 

 Uses condition variables  
 Uses readers-writers locks when longer sections of code need 

access to data 
 Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock 
 Turnstiles are per-lock-holding-thread, not per-object 

 Priority-inheritance per-turnstile gives the running thread the highest of 
the priorities of the threads in its turnstile 
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Windows Synchronization 

 Uses interrupt masks to protect access to global resources on 
uniprocessor systems 

 Uses spinlocks on multiprocessor systems 
 Spinlocking-thread will never be preempted 

 Also provides dispatcher objects user-land which may act 
mutexes, semaphores, events, and timers 
 Events 

 An event acts much like a condition variable 
 Timers notify one or more thread when time expired 
 Dispatcher objects either signaled-state (object available) 

or non-signaled state (thread will block) 
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Linux Synchronization 

 Linux: 
 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections 
 Version 2.6 and later, fully preemptive 

 Linux provides: 
 Semaphores 
 Atomic integers 
 spinlocks 
 reader-writer versions of both 

 On single-cpu system, spinlocks replaced by enabling and 
disabling kernel preemption 
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Pthreads Synchronization 

 Pthreads API is OS-independent 
 It provides: 

 mutex locks 
 condition variable 

 Non-portable extensions include: 
 read-write locks 
 spinlocks 
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Alternative Approaches 

 Transactional Memory 
 

 OpenMP 
 

 Functional Programming Languages 
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 A memory transaction is a sequence of read-write operations 

to memory that are performed atomically. 
 

              void update() 
    { 
    /* read/write memory */ 
     } 
 
 
 

Transactional Memory 
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 OpenMP is a set of compiler directives and API that support 

parallel progamming. 
 

              void update(int value) 
    { 
    #pragma omp critical 
    { 
     count += value 
    } 
     } 
 
The code contained within the #pragma omp critical directive 

is treated as a critical section and performed atomically. 
 

OpenMP 
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 Functional programming languages offer a different paradigm 

than procedural languages in that they do not maintain state.  
 

 Variables are treated as immutable and cannot change state 
once they have been assigned a value. 
 

 There is increasing interest in functional languages such as 
Erlang and Scala for their approach in handling data races. 

 
               

Functional Programming  
Languages 
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The Deadlock Problem 

 A set of blocked processes each holding a resource and waiting to 
acquire a resource held by another process in the set 
 

 Example  
 System has 2 disk drives 
 P1 and P2 each hold one disk drive and each needs another one 

 

 Example  

 semaphores A and B, initialized to 1  
             P0                        P1 

                 wait (A);          wait(B)  
                 wait (B);          wait(A) 
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Bridge Crossing Example 

 Traffic only in one direction 
 Each section of a bridge can be viewed as a resource 
 If a deadlock occurs, it can be resolved if one car backs up 

(preempt resources and rollback) 
 Several cars may have to be backed up if a deadlock occurs 
 Starvation is possible 
 Note – Most OSes do not prevent or deal with deadlocks 
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Deadlock Example 

/* thread one runs in this function */  

void *do_work_one(void *param) 
{  

   pthread_mutex_lock(&first_mutex);  

   pthread_mutex_lock(&second_mutex);  

   /** * Do some work */ 
   pthread_mutex_unlock(&second_mutex);  

   pthread_mutex_unlock(&first_mutex);  

   pthread_exit(0);  

}  

/* thread two runs in this function */  

void *do_work_two(void *param) 
{  

   pthread_mutex_lock(&second_mutex);  

   pthread_mutex_lock(&first_mutex);  

   /** * Do some work */ 
   pthread_mutex_unlock(&first_mutex);  

   pthread_mutex_unlock(&second_mutex);  

   pthread_exit(0);  

}  
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Deadlock Example with Lock Ordering 

void transaction(Account from, Account to, double amount)  

{  

   mutex lock1, lock2;  

   lock1 = get_lock(from);  

   lock2 = get_lock(to);  

   acquire(lock1);  

      acquire(lock2);  

         withdraw(from, amount);  

         deposit(to, amount);  

      release(lock2);  

   release(lock1);  

}  

Transactions 1 and 2 execute concurrently.  Transaction  1 transfers $25 
from account A to account B, and Transaction 2 transfers $50 from account 
B to account A 
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Deadlock Characterization 

 Mutual exclusion:  only one process at a time can use a 
resource 

 Hold and wait:  a process holding at least one resource is 
waiting to acquire additional resources held by other 
processes 

 No preemption:  a resource can be released only voluntarily 
by the process holding it, after that process has completed 
its task 

 Circular wait:  there exists a set {P0, P1, …, Pn} of waiting 
processes such that P0 is waiting for a resource that is held 
by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 
is waiting for a resource that is held by Pn, and Pn is waiting 
for a resource that is held by P0. 
 

Deadlock can arise if four conditions hold simultaneously. 
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Resource-Allocation Graph 

 V is partitioned into two types: 
 P = {P1, P2, …, Pn}, the set consisting of all the processes 

in the system 
 

 R = {R1, R2, …, Rm}, the set consisting of all resource 
types in the system 
 

 request edge – directed edge Pi → Rj 
 

 assignment edge – directed edge Rj → Pi 

A set of vertices V and a set of edges E. 
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Resource-Allocation Graph (Cont.) 

 Process 
 
 
 

 Resource Type with 4 instances 
 

 
 Pi requests instance of Rj 

 
 
 Pi is holding an instance of Rj 

Pi 

Pi 
Rj 

Rj 
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Example of a Resource Allocation Graph 
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Resource Allocation Graph With A Deadlock 
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Graph With A Cycle But No Deadlock 
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Basic Facts 

 If graph contains no cycles ⇒ no deadlock 
 If graph contains a cycle ⇒ 

 if only one instance per resource type, then deadlock 
 if several instances per resource type, possibility of 

deadlock 
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Methods for Handling Deadlocks 

 Ensure that the system will never enter a deadlock 
state: 
 Deadlock prevention 
 Deadlock avoidence 

 Allow the system to enter a deadlock state and then 
recover 

 Ignore the problem and pretend that deadlocks never 
occur in the system; used by most operating systems, 
including UNIX 
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End of Chapter 5 
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