
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 2: Operating-System
Structures

2.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 2: Operating-System Structures

 Operating System Services
 User Operating System Interface
 System Calls
 Types of System Calls
 System Programs
 Operating System Design and Implementation
 Operating System Structure
 Operating System Debugging
 Operating System Generation
 System Boot

2.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To describe the services an operating system provides to
users, processes, and other systems

 To discuss the various ways of structuring an operating
system

 To explain how operating systems are installed and
customized and how they boot

2.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Services

 Operating systems provide an environment for execution of programs
and services to programs and users

 One set of operating-system services provides functions that are
helpful to the user:
 User interface - Almost all operating systems have a user

interface (UI).
 Varies between Command-Line (CLI), Graphics User

Interface (GUI), Batch
 Program execution - The system must be able to load a

program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may
involve a file or an I/O device

2.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to
the user (Cont.):
 File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same
computer or between computers over a network
 Communications may be via shared memory or through message

passing (packets moved by the OS)
 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

2.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing
 Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
 Many types of resources - CPU cycles, main memory, file storage,

I/O devices.
 Accounting - To keep track of which users use how much and what

kinds of computer resources
 Protection and security - The owners of information stored in a

multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other
 Protection involves ensuring that all access to system resources is

controlled
 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access
attempts

2.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A View of Operating System Services

2.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry
 Sometimes implemented in kernel, sometimes by systems

program
 Sometimes multiple flavors implemented – shells
 Primarily fetches a command from user and executes it
 Sometimes commands built-in, sometimes just names of

programs
 If the latter, adding new features doesn’t require shell

modification

2.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bourne Shell Command Interpreter

2.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface
 Usually mouse, keyboard, and monitor
 Icons represent files, programs, actions, etc
 Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute function,
open directory (known as a folder)

 Invented at Xerox PARC
 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell
 Apple Mac OS X is “Aqua” GUI interface with UNIX kernel

underneath and shells available
 Unix and Linux have CLI with optional GUI interfaces (CDE,

KDE, GNOME)

2.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Touchscreen Interfaces

 Touchscreen devices require new
interfaces
 Mouse not possible or not desired
 Actions and selection based on

gestures
 Virtual keyboard for text entry

 Voice commands.

2.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

The Mac OS X GUI

2.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

2.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

2.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of Standard API

2.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Call Implementation

 Typically, a number associated with each system call
 System-call interface maintains a table indexed according to

these numbers

 The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented
 Just needs to obey API and understand what OS will do as a

result call
 Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built
into libraries included with compiler)

2.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

API – System Call – OS Relationship

2.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Call Parameter Passing

 Often, more information is required than simply identity of desired
system call
 Exact type and amount of information vary according to OS

and call
 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers
 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

2.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Parameter Passing via Table

2.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Types of System Calls

 Process control
 create process, terminate process
 end, abort
 load, execute
 get process attributes, set process attributes
 wait for time
 wait event, signal event
 allocate and free memory
 Dump memory if error
 Debugger for determining bugs, single step execution
 Locks for managing access to shared data between processes

2.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Types of System Calls

 File management
 create file, delete file
 open, close file
 read, write, reposition
 get and set file attributes

 Device management
 request device, release device
 read, write, reposition
 get device attributes, set device attributes
 logically attach or detach devices

2.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Types of System Calls (Cont.)

 Information maintenance
 get time or date, set time or date
 get system data, set system data
 get and set process, file, or device attributes

 Communications
 create, delete communication connection
 send, receive messages if message passing model to host

name or process name
 From client to server

 Shared-memory model create and gain access to memory
regions

 transfer status information
 attach and detach remote devices

2.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Types of System Calls (Cont.)

 Protection
 Control access to resources
 Get and set permissions
 Allow and deny user access

2.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Examples of Windows and Unix System Calls

2.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example: MS-DOS

 Single-tasking
 Shell invoked when system

booted
 Simple method to run

program
 No process created

 Single memory space
 Loads program into memory,

overwriting all but the kernel
 Program exit -> shell

reloaded

At system startup running a program

2.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example: FreeBSD

 Unix variant
 Multitasking
 User login -> invoke user’s choice of

shell
 Shell executes fork() system call to create

process
 Executes exec() to load program into

process
 Shell waits for process to terminate or

continues with user commands
 Process exits with:

 code = 0 – no error
 code > 0 – error code

2.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Programs

 System programs provide a convenient environment for program
development and execution. They can be divided into:
 File manipulation
 Status information sometimes stored in a File modification
 Programming language support
 Program loading and execution
 Communications
 Background services
 Application programs

 Most users’ view of the operation system is defined by system
programs, not the actual system calls

2.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Programs
 Provide a convenient environment for program development and

execution
 Some of them are simply user interfaces to system calls; others

are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

 Status information
 Some ask the system for info - date, time, amount of available

memory, disk space, number of users
 Others provide detailed performance, logging, and debugging

information
 Typically, these programs format and print the output to the

terminal or other output devices
 Some systems implement a registry - used to store and

retrieve configuration information

2.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Programs (Cont.)

 File modification
 Text editors to create and modify files
 Special commands to search contents of files or perform

transformations of the text

 Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

 Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems
 Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

2.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Programs (Cont.)

 Background Services
 Launch at boot time

 Some for system startup, then terminate
 Some from system boot to shutdown

 Provide facilities like disk checking, process scheduling, error
logging, printing

 Run in user context not kernel context
 Known as services, subsystems, daemons

 Application programs
 Don’t pertain to system
 Run by users
 Not typically considered part of OS
 Launched by command line, mouse click, finger poke

2.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals
 User goals – operating system should be convenient to use,

easy to learn, reliable, safe, and fast
 System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free,
and efficient

2.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Design and Implementation (Cont.)

 Important principle to separate
 Policy: What will be done?

Mechanism: How to do it?
 Mechanisms determine how to do something, policies decide

what will be done
 The separation of policy from mechanism is a very important

principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)

 Specifying and designing an OS is highly creative task of
software engineering

2.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation

 Much variation
 Early OSes in assembly language
 Then system programming languages like Algol, PL/1
 Now C, C++

 Actually usually a mix of languages
 Lowest levels in assembly
 Main body in C
 Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts
 More high-level language easier to port to other hardware

 But slower
 Emulation can allow an OS to run on non-native hardware

2.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Structure

 General-purpose OS is very large program
 Various ways to structure ones

 Simple structure – MS-DOS
 More complex -- UNIX
 Layered – an abstrcation
 Microkernel -Mach

2.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Simple Structure -- MS-DOS

 MS-DOS – written to provide the
most functionality in the least
space
 Not divided into modules
 Although MS-DOS has some

structure, its interfaces and
levels of functionality are not
well separated

2.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Non Simple Structure -- UNIX

 UNIX – limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts
 Systems programs
 The kernel

 Consists of everything below the system-call interface
and above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

2.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Layered Approach

 The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

 With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

2.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Microkernel System Structure

 Moves as much from the kernel into user space
 Mach example of microkernel

 Mac OS X kernel (Darwin) partly based on Mach

 Communication takes place between user modules using
message passing

 Benefits:
 Easier to extend a microkernel
 Easier to port the operating system to new architectures
 More reliable (less code is running in kernel mode)
 More secure

 Detriments:
 Performance overhead of user space to kernel space

communication

2.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Microkernel System Structure

2.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Modules

 Many modern operating systems implement loadable kernel
modules
 Uses object-oriented approach
 Each core component is separate
 Each talks to the others over known interfaces
 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible
 Linux, Solaris, etc

2.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris Modular Approach

2.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Hybrid Systems

 Most modern operating systems are actually not one pure model
 Hybrid combines multiple approaches to address

performance, security, usability needs
 Linux and Solaris kernels in kernel address space, so

monolithic, plus modular for dynamic loading of functionality
 Windows mostly monolithic, plus microkernel for different

subsystem personalities
 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa

programming environment
 Below is kernel consisting of Mach microkernel and BSD Unix

parts, plus I/O kit and dynamically loadable modules (called
kernel extensions)

2.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Mac OS X Structure

2.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

iOS

 Apple mobile OS for iPhone, iPad
 Structured on Mac OS X, added functionality
 Does not run OS X applications natively

 Also runs on different CPU architecture
(ARM vs. Intel)

 Cocoa Touch Objective-C API for
developing apps

 Media services layer for graphics, audio,
video

 Core services provides cloud computing,
databases

 Core operating system, based on Mac OS X
kernel

2.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Android

 Developed by Open Handset Alliance (mostly Google)
 Open Source

 Similar stack to IOS
 Based on Linux kernel but modified

 Provides process, memory, device-driver management
 Adds power management

 Runtime environment includes core set of libraries and Dalvik
virtual machine
 Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

 Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

2.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Android Architecture

2.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs
 OS generate log files containing error information
 Failure of an application can generate core dump file capturing

memory of the process
 Operating system failure can generate crash dump file containing

kernel memory
 Beyond crashes, performance tuning can optimize system performance

 Sometimes using trace listings of activities, recorded for analysis
 Profiling is periodic sampling of instruction pointer to look for

statistical trends
Kernighan’s Law: “Debugging is twice as hard as writing the code in the

first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

2.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Performance Tuning

 Improve performance by
removing bottlenecks

 OS must provide means of
computing and displaying
measures of system
behavior

 For example, “top” program
or Windows Task Manager

2.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

DTrace

 DTrace tool in Solaris,
FreeBSD, Mac OS X allows
live instrumentation on
production systems

 Probes fire when code is
executed within a provider,
capturing state data and
sending it to consumers of
those probes

 Example of following
XEventsQueued system call
move from libc library to
kernel and back

2.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Dtrace (Cont.)

 DTrace code to record
amount of time each
process with UserID 101 is
in running mode (on CPU)
in nanoseconds

2.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Generation

 Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

 SYSGEN program obtains information concerning the specific
configuration of the hardware system
 Used to build system-specific compiled kernel or system-

tuned
 Can general more efficient code than one general kernel

2.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

System Boot

 When power initialized on system, execution starts at a fixed
memory location
 Firmware ROM used to hold initial boot code

 Operating system must be made available to hardware so hardware
can start it
 Small piece of code – bootstrap loader, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it
 Sometimes two-step process where boot block at fixed

location loaded by ROM code, which loads bootstrap loader
from disk

 Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

 Kernel loads and system is then running

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 2

	Chapter 2: Operating-System Structures
	Chapter 2: Operating-System Structures
	Objectives
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.)
	A View of Operating System Services
	User Operating System Interface - CLI
	Bourne Shell Command Interpreter
	User Operating System Interface - GUI
	Touchscreen Interfaces
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls
	Types of System Calls (Cont.)
	Types of System Calls (Cont.)
	Examples of Windows and Unix System Calls
	Standard C Library Example
	Example: MS-DOS
	Example: FreeBSD
	System Programs
	System Programs
	System Programs (Cont.)
	System Programs (Cont.)
	Operating System Design and Implementation
	Operating System Design and Implementation (Cont.)
	Implementation
	Operating System Structure
	Simple Structure -- MS-DOS
	Non Simple Structure -- UNIX
	Traditional UNIX System Structure
	Layered Approach
	Microkernel System Structure
	Microkernel System Structure
	Modules
	Solaris Modular Approach
	Hybrid Systems
	Mac OS X Structure
	iOS
	Android
	Android Architecture
	Operating-System Debugging
	Performance Tuning
	DTrace
	Dtrace (Cont.)
	Operating System Generation
	System Boot
	End of Chapter 2

