
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 4: Threads

 Overview
 Multicore Programming
 Multithreading Models
 Thread Libraries
 Implicit Threading
 Threading Issues
 Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer
systems

 To discuss the APIs for the Pthreads, Windows, and Java
thread libraries

 To explore several strategies that provide implicit threading
 To examine issues related to multithreaded programming
 To cover operating system support for threads in Windows and

Linux

4.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Motivation

 Most modern applications are multithreaded
 Threads run within application
 Multiple tasks with the application can be implemented by

separate threads
 Update display
 Fetch data
 Spell checking
 Answer a network request

 Process creation is heavy-weight while thread creation is
light-weight

 Can simplify code, increase efficiency
 Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multithreaded Server Architecture

4.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Benefits

 Responsiveness – may allow continued execution if part of
process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier
than shared memory or message passing

 Economy – cheaper than process creation, thread switching
lower overhead than context switching

 Scalability – process can take advantage of multiprocessor
architectures

4.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on
programmers, challenges include:
 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

 Parallelism implies a system can perform more than one task
simultaneously

 Concurrency supports more than one task making progress
 Single processor / core, scheduler providing concurrency

4.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming (Cont.)

 Types of parallelism
 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each
 Task parallelism – distributing threads across cores, each

thread performing unique operation
 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads
 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

4.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Concurrency vs. Parallelism
 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Single and Multithreaded Processes

4.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Amdahl’s Law

 Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

 S is serial portion
 N processing cores

 That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times
 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

 But does the law take into account contemporary multicore systems?

4.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

User Threads and Kernel Threads

 User threads - management done by user-level threads library
 Three primary thread libraries:

 POSIX Pthreads
 Windows threads
 Java threads

 Kernel threads - Supported by the Kernel
 Examples – virtually all general purpose operating systems, including:

 Windows
 Solaris
 Linux
 Tru64 UNIX
 Mac OS X

4.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

4.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Many-to-One

 Many user-level threads mapped to
single kernel thread

 One thread blocking causes all to block
 Multiple threads may not run in parallel

on muticore system because only one
may be in kernel at a time

 Few systems currently use this model
 Examples:

 Solaris Green Threads
 GNU Portable Threads

4.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

One-to-One

 Each user-level thread maps to kernel thread
 Creating a user-level thread creates a kernel thread
 More concurrency than many-to-one
 Number of threads per process sometimes

restricted due to overhead
 Examples

 Windows
 Linux
 Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Many-to-Many Model
 Allows many user level threads to be

mapped to many kernel threads
 Allows the operating system to create

a sufficient number of kernel threads
 Solaris prior to version 9
 Windows with the ThreadFiber

package

4.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Two-level Model

 Similar to M:M, except that it allows a user thread to be
bound to kernel thread

 Examples
 IRIX
 HP-UX
 Tru64 UNIX
 Solaris 8 and earlier

4.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread Libraries

 Thread library provides programmer with API for creating
and managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

4.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthreads

 May be provided either as user-level or kernel-level
 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization
 Specification, not implementation
 API specifies behavior of the thread library, implementation is

up to development of the library
 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

4.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthreads Example

4.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthreads Example (Cont.)

4.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthreads Code for Joining 10 Threads

4.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Multithreaded C Program

4.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Multithreaded C Program (Cont.)

4.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Java Threads

 Java threads are managed by the JVM
 Typically implemented using the threads model provided by

underlying OS
 Java threads may be created by:

 Extending Thread class
 Implementing the Runnable interface

4.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Java Multithreaded Program

4.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Java Multithreaded Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implicit Threading

 Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and
run-time libraries rather than programmers

 Three methods explored
 Thread Pools
 OpenMP
 Grand Central Dispatch

 Other methods include Microsoft Threading Building Blocks
(TBB), java.util.concurrent package

4.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread Pools

 Create a number of threads in a pool where they await work
 Advantages:

 Usually slightly faster to service a request with an existing
thread than create a new thread

 Allows the number of threads in the application(s) to be
bound to the size of the pool

 Separating task to be performed from mechanics of
creating task allows different strategies for running task
 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

OpenMP
 Set of compiler directives and an

API for C, C++, FORTRAN
 Provides support for parallel

programming in shared-memory
environments

 Identifies parallel regions –
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

#pragma omp parallel for
for(i=0;i<N;i++) {

 c[i] = a[i] + b[i];

}

Run for loop in parallel

4.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Grand Central Dispatch

 Apple technology for Mac OS X and iOS operating systems
 Extensions to C, C++ languages, API, and run-time library
 Allows identification of parallel sections
 Manages most of the details of threading
 Block is in “^{ }” - ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue
 Assigned to available thread in thread pool when removed

from queue

4.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Grand Central Dispatch

 Two types of dispatch queues:
 serial – blocks removed in FIFO order, queue is per process,

called main queue
 Programmers can create additional serial queues within

program
 concurrent – removed in FIFO order but several may be

removed at a time
 Three system wide queues with priorities low, default, high

4.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Signal handling
 Synchronous and asynchronous

 Thread cancellation of target thread
 Asynchronous or deferred

 Thread-local storage
 Scheduler Activations

4.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all
threads?
 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running
process including all threads

4.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Signal Handling

 Signals are used in UNIX systems to notify a process that a
particular event has occurred.

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

 Every signal has default handler that kernel runs when
handling signal
 User-defined signal handler can override default
 For single-threaded, signal delivered to process

4.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?
 Deliver the signal to the thread to which the signal

applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the

process

4.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread Cancellation

 Terminating a thread before it has finished
 Thread to be canceled is target thread
 Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to periodically
check if it should be cancelled

 Pthread code to create and cancel a thread:

4.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending

until thread enables it
 Default type is deferred

 Cancellation only occurs when thread reaches cancellation
point
 I.e. pthread_testcancel()

 Then cleanup handler is invoked
 On Linux systems, thread cancellation is handled through signals

4.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its
own copy of data

 Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

 Different from local variables
 Local variables visible only during single function

invocation
 TLS visible across function invocations

 Similar to static data

 TLS is unique to each thread

4.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Scheduler Activations
 Both M:M and Two-level models require

communication to maintain the appropriate
number of kernel threads allocated to the
application

 Typically use an intermediate data structure
between user and kernel threads – lightweight
process (LWP)
 Appears to be a virtual processor on which

process can schedule user thread to run
 Each LWP attached to kernel thread
 How many LWPs to create?

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

 This communication allows an application to
maintain the correct number kernel threads

4.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Examples

 Windows Threads
 Linux Threads

4.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Threads

 Windows implements the Windows API – primary API for Win
98, Win NT, Win 2000, Win XP, and Win 7

 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set representing state of processor
 Separate user and kernel stacks for when thread runs in

user mode or kernel mode
 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)
 The register set, stacks, and private storage area are known as

the context of the thread

4.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Threads (Cont.)

 The primary data structures of a thread include:
 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in
kernel space

 KTHREAD (kernel thread block) – scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

 TEB (thread environment block) – thread id, user-mode
stack, thread-local storage, in user space

4.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Threads Data Structures

4.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Linux Threads

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the

parent task (process)
 Flags control behavior

 struct task_struct points to process data structures
(shared or unique)

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 4

	Chapter 4: Threads
	Chapter 4: Threads
	Objectives
	Motivation
	Multithreaded Server Architecture
	Benefits
	Multicore Programming
	Multicore Programming (Cont.)
	Concurrency vs. Parallelism
	Single and Multithreaded Processes
	Amdahl’s Law
	User Threads and Kernel Threads
	Multithreading Models
	Many-to-One
	One-to-One
	Many-to-Many Model
	Two-level Model
	Thread Libraries
	Pthreads
	Pthreads Example
	Pthreads Example (Cont.)
	Pthreads Code for Joining 10 Threads
	Windows Multithreaded C Program
	Windows Multithreaded C Program (Cont.)
	Java Threads
	Java Multithreaded Program
	Java Multithreaded Program (Cont.)
	Implicit Threading
	Thread Pools
	OpenMP
	Grand Central Dispatch
	Grand Central Dispatch
	Threading Issues
	Semantics of fork() and exec()
	Signal Handling
	Signal Handling (Cont.)
	Thread Cancellation
	Thread Cancellation (Cont.)
	Thread-Local Storage
	Scheduler Activations
	Operating System Examples
	Windows Threads
	Windows Threads (Cont.)
	Windows Threads Data Structures
	Linux Threads
	End of Chapter 4

