Chapter 15:
The Linux System

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

3

Chapter 15: The Linux System

v&hl}‘
Y
g

¥ N

Linux History

Design Principles

Kernel Modules

Process Management
Scheduling

Memory Management

File Systems

Input and Output
Interprocess Communication
Network Structure

Security

Operating System Concepts Essentials — 2" Edition 15.2 Silberschatz, Galvin and Gagne ©2013

]
1{"‘_

! - '
L Objectives

>

B To explore the history of the UNIX operating system from
which Linux is derived and the principles upon which Linux’s
design is based

B To examine the Linux process model and illustrate how Linux
schedules processes and provides interprocess
communication

B To look at memory management in Linux

® To explore how Linux implements file systems and manages
I/O devices

Operating System Concepts Essentials — 2" Edition 15.3 Silberschatz, Galvin and Gagne ©2013

N
-

-
- “‘"3"“‘?*»1

- ot History

B Linux is a modern, free operating system based on UNIX
standards

m First developed as a small but self-contained kernel in 1991
by Linus Torvalds, with the major design goal of UNIX
compatibility, released as open source

m |ts history has been one of collaboration by many users from
all around the world, corresponding almost exclusively over
the Internet

®m [t has been designed to run efficiently and reliably on
common PC hardware, but also runs on a variety of other
platforms

B The core Linux operating system kernel is entirely original,
but it can run much existing free UNIX software, resulting in
an entire UNIX-compatible operating system free from
proprietary code

B Linux system has many, varying Linux distributions
including the kernel, applications, and management tools

ot WY
- /‘%; S
4 ‘tk‘;_-f'

“ <0

Operating System Concepts Essentials — 2" Edition 15.4 Silberschatz, Galvin and Gagne ©2013

]

N
i “"?"“P*l

The Linux Kernel

® Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely
limited device-drive support, and supported only the Minix file
system

® Linux 1.0 (March 1994) included these new features:

Support for UNIX’ s standard TCP/IP networking protocols
BSD-compatible socket interface for networking programming
Device-driver support for running IP over an Ethernet
Enhanced file system

Support for a range of SCSI controllers for
high-performance disk access

Extra hardware support

m Version 1.2 (March 1995) was the final PC-only Linux kernel

m Kernels with odd version numbers are development kernels,
those with even numbers are production kernels

Operating System Concepts Essentials — 2" Edition 15.5 Silberschatz, Galvin and Gagne ©2013

R > ,t ‘-'\ii
& : _71; \.‘N_;

i

N
s

=
L ﬂ"?"“’*l

Linux 2.0

Operating System Concepts Essentials — 2" Edition 15.6 Silberschatz, Galvin and Gagne ©2013

Released in June 1996, 2.0 added two major new capabilities:

e Support for multiple architectures, including a fully 64-bit native Alpha
port

e Support for multiprocessor architectures
Other new features included:

e Improved memory-management code

e Improved TCP/IP performance

e Support for internal kernel threads, for handling dependencies between
loadable modules, and for automatic loading of modules on demand

e Standardized configuration interface

Avalilable for Motorola 68000-series processors, Sun Sparc
systems, and for PC and PowerMac systems

2.4 and 2.6 increased SMP support, added journaling file system,
preemptive kernel, 64-bit memory support

3.0 released in 2011, 20" anniversary of Linux, improved
virtualization support, new page write-back facility, improved
memory management, new Completely Fair Scheduler

o ey
____,/{k-?”"%':; M
A

i

v o The Linux System

®m Linux uses many tools developed as part of Berkeley’ s BSD
operating system, MIT s X Window System, and the Free
Software Foundation's GNU project

m The main system libraries were started by the GNU project, with
improvements provided by the Linux community

® Linux networking-administration tools were derived from 4.3BSD
code: recent BSD derivatives such as Free BSD have borrowed
code from Linux in return

® The Linux system is maintained by a loose network of developers
collaborating over the Internet, with a small number of public ftp
sites acting as de facto standard repositories

m File System Hierarchy Standard document maintained by the
Linux community to ensure compatibility across the various
system components

e Specifies overall layout of a standard Linux file system, determines

under which directory names configuration files, libraries, system
binaries, and run-time data files should be stored

. \:\]

e b
=
2 <

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.7

]

1-.-:;

)

-,,--z Linux Distributions

m Standard, precompiled sets of packages, or distributions,
include the basic Linux system, system installation and
management utilities, and ready-to-install packages of common
UNIX tools

m The first distributions managed these packages by simply
providing a means of unpacking all the files into the appropriate
places; modern distributions include advanced package
management

m Early distributions included SLS and Slackware

e Red Hat and Debian are popular distributions from
commercial and noncommercial sources, respectively,
others include Canonical and SuSE

®m The RPM Package file format permits compatibility among the
various Linux distributions

SE
o ‘i‘i‘;{'

i

Operating System Concepts Essentials — 2" Edition 15.8 Silberschatz, Galvin and Gagne ©2013

_’h

o)

r o Linux Licensing

m The Linux kernel is distributed under the GNU General Public
License (GPL), the terms of which are set out by the Free
Software Foundation

e Not public domain, in that not all rights are waived

® Anyone using Linux, or creating their own derivative of Linux,
may not make the derived product proprietary; software
released under the GPL may not be redistributed as a binary-
only product

e Can sell distributions, but must offer the source code too

/‘»ﬂ -'\1

Operating System Concepts Essentials — 2" Edition 15.9 Silberschatz, Galvin and Gagne ©2013

J

‘\-.':;

)

. L Design Principles

® Linux is a multiuser, multitasking system with a full set of
UNIX-compatible tools

m [ts file system adheres to traditional UNIX semantics, and it
fully implements the standard UNIX networking model

® Main design goals are speed, efficiency, and standardization

®m Linux is designed to be compliant with the relevant POSIX
documents: at least two Linux distributions have achieved
official POSIX certification

e Supports Pthreads and a subset of POSIX real-time
process control

® The Linux programming interface adheres to the SVR4 UNIX
semantics, rather than to BSD behavior

£ "\
o ‘i‘i‘;{'
29

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.10

| m-.-vm.j) 1
«g%> Components of a Linux System
t Hser utﬁ?[r compilers
nagemen utih
proggrams Processes progra):ns

system shared libraries

Linux kernel

loadable kernel modules

Operating System Concepts Essentials — 2" Edition 15.11 Silberschatz, Galvin and Gagne ©2013

=

&
> -ﬂw-*hj

-7 Components of a Linux System

®m Like most UNIX implementations, Linux is composed of three
main bodies of code; the most important distinction between
the kernel and all other components.

B The kernel is responsible for maintaining the important
abstractions of the operating system

e Kernel code executes in kernel mode with full access to all
the physical resources of the computer

e All kernel code and data structures are kept in the same
single address space

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.12

=1,

£

&T.;;“i Components of a Linux System (Cont.)

m The system libraries define a standard set of functions
through which applications interact with the kernel, and which
implement much of the operating-system functionality that
does not need the full privileges of kernel code

m The system utilities perform individual specialized
management tasks

m User-mode programs rich and varied, including multiple
shells like the bourne-again (bash)

Operating System Concepts Essentials — 2" Edition 15.13 Silberschatz, Galvin and Gagne ©2013

g Kernel Modules

m Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel.

m A kernel module may typically implement a device driver, a file
system, or a networking protocol

® The module interface allows third parties to write and distribute, on
their own terms, device drivers or file systems that could not be
distributed under the GPL.

m Kernel modules allow a Linux system to be set up with a standard,
minimal kernel, without any extra device drivers built in.
® Four components to Linux module support:
e module-management system
e module loader and unloader
e driver-registration system
e conflict-resolution mechanism

Operating System Concepts Essentials — 2" Edition 15.14 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

,r"'?"-’"?'rj

il Module Management

B Supports loading modules into memory and letting them talk
to the rest of the kernel

® Module loading is split into two separate sections:
e Managing sections of module code in kernel memory
e Handling symbols that modules are allowed to reference

B The module requestor manages loading requested, but
currently unloaded, modules; it also regularly queries the
kernel to see whether a dynamically loaded module is still in
use, and will unload it when it is no longer actively needed

Operating System Concepts Essentials — 2" Edition 15.15 Silberschatz, Galvin and Gagne ©2013

=

{ s
o

S Driver Registration

m Allows modules to tell the rest of the kernel that a new driver
has become available

m The kernel maintains dynamic tables of all known drivers, and
provides a set of routines to allow drivers to be added to or
removed from these tables at any time

m Registration tables include the following items:
e Device drivers
e File systems
e Network protocols
e Binary format

Operating System Concepts Essentials — 2" Edition 15.16 Silberschatz, Galvin and Gagne ©2013

=N

=
= -a-m.}

il Conflict Resolution

® A mechanism that allows different device drivers to reserve
hardware resources and to protect those resources from
accidental use by another driver.

®m The conflict resolution module aims to:

e Prevent modules from clashing over access to hardware
resources

e Prevent autoprobes from interfering with existing device
drivers

e Resolve conflicts with multiple drivers trying to access the
same hardware:

1. Kernel maintains list of allocated HW resources
2. Driver reserves resources with kernel database first

3. Reservation request rejected if resource not available

S

Silberschatz, Galvin and Gagne ©2013

\

Operating System Concepts Essentials — 2" Edition 15.17

]

1-1:;

,r"'?"-’"?'rj

o f Process Management

m UNIX process management separates the creation of
processes and the running of a new program into two distinct
operations.

e The fork() system call creates a new process
e A new program is run after a call to exec()

m Under UNIX, a process encompasses all the information that
the operating system must maintain to track the context of a
single execution of a single program

® Under Linux, process properties fall into three groups: the
process’ s identity, environment, and context

Operating System Concepts Essentials — 2" Edition 15.18 Silberschatz, Galvin and Gagne ©2013

“,
- f$

i
- nﬂ""h,j

g5 Process Identity

® Process ID (PID) - The unique identifier for the process; used to
specify processes to the operating system when an application
makes a system call to signal, modify, or wait for another process

m Credentials - Each process must have an associated user ID
and one or more group IDs that determine the process’ s rights to
access system resources and files

m Personality - Not traditionally found on UNIX systems, but under
Linux each process has an associated personality identifier that
can slightly modify the semantics of certain system calls

e Used primarily by emulation libraries to request that system
calls be compatible with certain specific flavors of UNIX

®m Namespace — Specific view of file system hierarchy

e Most processes share common namespace and operate on a
shared file-system hierarchy

e But each can have unique file-system hierarchy with its own
root directory and set of mounted file systems

._____/',". /&;«, -.‘-\3

y \;"‘"_-" i
v

Operating System Concepts Essentials — 2" Edition 15.19 Silberschatz, Galvin and Gagne ©2013

e
N
(= «ﬁ’ml
(k o

L Process Environment

B The process’ s environment is inherited from its parent, and is
composed of two null-terminated vectors:

e The argument vector lists the command-line arguments
used to invoke the running program; conventionally starts
with the name of the program itself.

e The environment vector is a list of “NAME=VALUE" pairs
that associates named environment variables with arbitrary
textual values.

m Passing environment variables among processes and inheriting
variables by a process’ s children are flexible means of passing
information to components of the user-mode system software.

® The environment-variable mechanism provides a customization
of the operating system that can be set on a per-process basis,
rather than being configured for the system as a whole.

ot WY
- /‘%; S
4 ‘tk‘;_-f'

“ <0

Operating System Concepts Essentials — 2" Edition 15.20 Silberschatz, Galvin and Gagne ©2013

y

N

s,

o "'?'-"?'.\-1

g5 Process Context

® The (constantly changing) state of a running program at any
point in time
m The scheduling context is the most important part of the

process context; it is the information that the scheduler needs to
suspend and restart the process

B The kernel maintains accounting information about the
resources currently being consumed by each process, and the
total resources consumed by the process in its lifetime so far

m The file table is an array of pointers to kernel file structures

e When making file I/O system calls, processes refer to files by
their index into this table, the file descriptor (fd)

\

- =S
’ﬂ“)
L e

'

s ."“

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.21

]
1{"‘_

,f‘.w"fl
d T ’

" o Process Context (Cont.)

® Whereas the file table lists the existing open files, the
file-system context applies to requests to open new files

e The current root and default directories to be used for new
file searches are stored here

B The signal-handler table defines the routine in the process’s
address space to be called when specific signals arrive

m The virtual-memory context of a process describes the full
contents of the its private address space

Operating System Concepts Essentials — 2" Edition 15.22 Silberschatz, Galvin and Gagne ©2013

‘|

N

< Processes and Threads

s,

® Linux uses the same internal representation for processes and threads; a
thread is simply a new process that happens to share the same address
space as its parent

e Both are called tasks by Linux

m Adistinction is only made when a new thread is created by the clone()
system call

e Tork() creates a new task with its own entirely new task context
e clone() creates a new task with its own identity, but that is allowed
to share the data structures of its parent

m Using clone() gives an application fine-grained control over exactly what
Is shared between two threads

flag meaning
CLONE_FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

= , v: \ :.‘

& P /‘%{; _'\.\}l
o ‘%‘i‘r—('

29

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.23

J

1-.-:;

-

5T Scheduling

® The job of allocating CPU time to different tasks within an
operating system

®m While scheduling is normally thought of as the running and
interrupting of processes, in Linux, scheduling also includes the
running of the various kernel tasks

® Running kernel tasks encompasses both tasks that are
requested by a running process and tasks that execute internally
on behalf of a device driver

m As of 2.5, new scheduling algorithm — preemptive, priority-based,
known as O(1)

e Real-time range

e nice value

e Had challenges with interactive performance
m 2.6 introduced Completely Fair Scheduler (CFS)

= , v: \ :.‘
& P /‘%{; _'\.\}l
o ‘%‘i‘r—('

A 29K a

Operating System Concepts Essentials — 2" Edition 15.24 Silberschatz, Galvin and Gagne ©2013

]
1{"‘_

) e
't CFS

A

Eliminates traditional, common idea of time slice
Instead all tasks allocated portion of processor’s time

m CFS calculates how long a process should run as a function
of total number of tasks

® N runnable tasks means each gets 1/N of processor’s time
B Then weights each task with its nice value
e Smaller nice value -> higher weight (higher priority)

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.25

S CFS (Cont.)

B Then each task run with for time proportional to task’s weight
divided by total weight of all runnable tasks

m Configurable variable target latency is desired interval during
which each task should run at least once

e Consider simple case of 2 runnable tasks with equal weight
and target latency of 10ms — each then runs for 5ms

» If 10 runnable tasks, each runs for 1ms

» Minimum granularity ensures each run has reasonable
amount of time (which actually violates fairness idea)

Operating System Concepts Essentials — 2" Edition 15.26 Silberschatz, Galvin and Gagne ©2013

o

1-1:;

,r"'?"-’"?'rj

G Kernel Synchronization

m A request for kernel-mode execution can occur in two ways:

e A running program may request an operating system
service, either explicitly via a system call, or implicitly, for
example, when a page fault occurs

e A device driver may deliver a hardware interrupt that
causes the CPU to start executing a kernel-defined
handler for that interrupt

m Kernel synchronization requires a framework that will allow
the kernel’ s critical sections to run without interruption by
another critical section

Operating System Concepts Essentials — 2" Edition 15.27 Silberschatz, Galvin and Gagne ©2013

=
&
iy
i

L Kernel Synchronization (Cont.)

® Linux uses two techniques to protect critical sections:

1. Normal kernel code is nonpreemptible (until 2.6)

— when a time interrupt is received while a process is
executing a kernel system service routine, the kernel’ s
need resched flag is set so that the scheduler will run
once the system call has completed and control is
about to be returned to user mode

2. The second technique applies to critical sections that occur in an
interrupt service routines

— By using the processor’ s interrupt control hardware to disable
interrupts during a critical section, the kernel guarantees that it can
proceed without the risk of concurrent access of shared data structures

e Provides spin locks, semaphores, and reader-writer versions of both
» Behavior modified if on single processor or multi:

single processor multiple processors
Disable kernel preemption. Acquire spin lock.
Enable kernel preemption. Release spin lock.

3 S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 15.28 Silberschatz, Galvin and Gagne ©2013

L Kernel Synchronization (Cont.)

®m To avoid performance penalties, Linux’ s kernel uses a
synchronization architecture that allows long critical sections to
run without having interrupts disabled for the critical section’ s
entire duration

B Interrupt service routines are separated into a top half and a
bottom half

e The top half is a normal interrupt service routine, and runs
with recursive interrupts disabled

e The bottom half is run, with all interrupts enabled, by a
miniature scheduler that ensures that bottom halves never
interrupt themselves

e This architecture is completed by a mechanism for disabling
selected bottom halves while executing normal, foreground
kernel code

SE
o ‘i‘i‘;{'
AP0

Operating System Concepts Essentials — 2" Edition 15.29 Silberschatz, Galvin and Gagne ©2013

]
".f}‘_

aal '
Lt Interrupt Protection Levels

top-half interrupt handlers

bottom-half interrupt handlers

kernel-system service routines (preemptible)

increasing priority >

user-mode programs (preemptible)

m Each level may be interrupted by code running at a higher
level, but will never be interrupted by code running at the
same or a lower level

m User processes can always be preempted by another
process when a time-sharing scheduling interrupt occurs

Operating System Concepts Essentials — 2" Edition 15.30 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

(P> Symmetric Multiprocessing

® Linux 2.0 was the first Linux kernel to support SMP hardware;
separate processes or threads can execute in parallel on
Sseparate processors

m Until version 2.2, to preserve the kernel’ s nonpreemptible
synchronization requirements, SMP imposes the restriction, via a
single kernel spinlock, that only one processor at a time may
execute kernel-mode code

m Later releases implement more scalability by splitting single
spinlock into multiple locks, each protecting a small subset of
kernel data structures

® Version 3.0 adds even more fine-grained locking, processor
affinity, and load-balancing

SE
o ‘i‘i‘;{'
AP0

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.31

y

N

s,

o "'?'-"?'.\-1

w57 Memory Management

B Linux’s physical memory-management system deals with
allocating and freeing pages, groups of pages, and small blocks
of memory

®m [t has additional mechanisms for handling virtual memory,
memory mapped into the address space of running processes

m Splits memory into four different zones due to hardware
characteristics

e Architecture specific, for example on x86:

zone physical memory
ZONE_DMA <16 MB
ZONE_NORMAL 16 .. 896 MB
ZONE_HIGHMEM > 896 MB

Operating System Concepts Essentials — 2" Edition 15.32 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

S Managing Physical Memory

m The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request

m The allocator uses a buddy-heap algorithm to keep track of
available physical pages

e Each allocatable memory region is paired with an
adjacent partner

e Whenever two allocated partner regions are both freed
up they are combined to form a larger region

e If a small memory request cannot be satisfied by
allocating an existing small free region, then a larger free
region will be subdivided into two partners to satisfy the
request

= , v: \ :.‘
& P /‘%{; _'\.\}l
o ‘%‘i‘r—('

A 29K a

Operating System Concepts Essentials — 2" Edition 15.33 Silberschatz, Galvin and Gagne ©2013

g7 Managing Physical Memory (Cont.)

® Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator)

m Also uses slab allocator for kernel memory

B Page cache and virtual memory system also manage
physical memory

e Page cache is kernel's main cache for files and main
mechanism for 1/O to block devices

e Page cache stores entire pages of file contents for local
and network file I/0

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.34

£

iy

&f%;.'-‘ﬁ Splitting of Memory in a Buddy Heap

8KB 8KB
16KB
4KB
8KB
4KB

Operating System Concepts Essentials — 21 Edition 1535 Silberschatz, Galvin and Gagne ©2013

£

"

e Slab Allocator in Linux

kernel objects caches slabs

_ Y
3-KB | N
objects _

physically
contiguous
pages

[—
7-KB v -
objects T
/

Operating System Concepts Essentials — 2"d Edition 15.36 Silberschatz, Galvin and Gagne ©2013

o

‘\-.':‘

)

o f Virtual Memory

® The VM system maintains the address space visible to each
process: It creates pages of virtual memory on demand, and
manages the loading of those pages from disk or their swapping
back out to disk as required.

® The VM manager maintains two separate views of a process’ s
address space:

e A logical view describing instructions concerning the layout of
the address space

» The address space consists of a set of non-overlapping
regions, each representing a continuous, page-aligned
subset of the address space

e A physical view of each address space which is stored in the
hardware page tables for the process

3 S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 15.37 Silberschatz, Galvin and Gagne ©2013

=

X
.

G Virtual Memory (Cont.)

® Virtual memory regions are characterized by:

e The backing store, which describes from where the pages for
a region come; regions are usually backed by a file or by
nothing (demand-zero memory)

e The region’ s reaction to writes (page sharing or copy-on-
write

m The kernel creates a new virtual address space

1. When a process runs a new program with the exec()
system call

2. Upon creation of a new process by the fork() system call

Operating System Concepts Essentials — 2" Edition 15.38 Silberschatz, Galvin and Gagne ©2013

]

N

PN

L Virtual Memory (Cont.)

® On executing a new program, the process is given a new,
completely empty virtual-address space; the program-loading
routines populate the address space with virtual-memory regions

m Creating a new process with fork() involves creating a
complete copy of the existing process’ s virtual address space

e The kernel copies the parent process’ s VMA descriptors,
then creates a new set of page tables for the child

e The parent’ s page tables are copied directly into the child’ s,
with the reference count of each page covered being
incremented

e After the fork, the parent and child share the same physical
pages of memory in their address spaces

S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 15.39 Silberschatz, Galvin and Gagne ©2013

J

1-1:;

55 Swapping and Paging

m The VM paging system relocates pages of memory from
physical memory out to disk when the memory is needed for
something else

m The VM paging system can be divided into two sections:

e The pageout-policy algorithm decides which pages to
write out to disk, and when

e The paging mechanism actually carries out the transfer,
and pages data back into physical memory as needed

e Can page out to either swap device or normal files

e Bitmap used to track used blocks in swap space kept in
physical memory

e Allocator uses next-fit algorithm to try to write contiguous
runs

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 15.40 Silberschatz, Galvin and Gagne ©2013

J

‘\-.':;

)

G5 Kernel Virtual Memory

m The Linux kernel reserves a constant, architecture-dependent

region of the virtual address space of every process for its own
internal use

®m This kernel virtual-memory area contains two regions:

e A static area that contains page table references to every
available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code

e The reminder of the reserved section is not reserved for
any specific purpose; its page-table entries can be modified
to point to any other areas of memory

£ "\
o ‘i‘i‘;{'
29x

Operating System Concepts Essentials — 2" Edition 15.41 Silberschatz, Galvin and Gagne ©2013

=
&
p—
i

«4%> Executing and Loading User Programs

B Linux maintains a table of functions for loading programs; it gives
each function the opportunity to try loading the given file when an
exec system call is made

® The registration of multiple loader routines allows Linux to support
both the ELF and a.out binary formats

m [nitially, binary-file pages are mapped into virtual memory

e Only when a program tries to access a given page will a page
fault result in that page being loaded into physical memory

m An ELF-format binary file consists of a header followed by several
page-aligned sections

e The ELF loader works by reading the header and mapping the
sections of the file into separate regions of virtual memory

3 S WY
- /‘k; S
o ‘%-:.

AYx

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.42

Ry

g;‘;‘-"‘ﬁ Memory Layout for ELF Programs

kernel virtual memory I memory invisible to user-mode code

stack

!
T

memory-mapped region

memory-mapped region

memory-mapped region

0 the ‘ork’ pointer
run-time data

uninitialized data
initialized data
program text

forbidden region

/‘» """

Operating System Concepts Essentials — 2"d Edition 15.43 Silberschatz, Galvin and Gagne ©2013

=

S
o "'?'-"?'.\-1

g7 Static and Dynamic Linking

m A program whose necessary library functions are embedded
directly in the program’ s executable binary file is statically
linked to its libraries

B The main disadvantage of static linkage is that every program
generated must contain copies of exactly the same common
system library functions

® Dynamic linking is more efficient in terms of both physical
memory and disk-space usage because it loads the system
libraries into memory only once

\

o &-{

v

Operating System Concepts Essentials — 2" Edition 15.44 Silberschatz, Galvin and Gagne ©2013

=

~
o "'?"-"?'.'--1

=$»/ Static and Dynamic Linking (Cont.)

B Linux implements dynamic linking in user mode through special
linker library

e Every dynamically linked program contains small statically
linked function called when process starts

e Maps the link library into memory

e Link library determines dynamic libraries required by process
and names of variables and functions needed

e Maps libraries into middle of virtual memory and resolves
references to symbols contained in the libraries

e Shared libraries compiled to be position-independent code
(P1C) so can be loaded anywhere

£ ~ .“ v. A\ .‘
-//"%;; B
o j%%-f

A Agx

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.45

=

g '
g File Systems

m To the user, Linux’s file system appears as a hierarchical directory tree
obeying UNIX semantics

m Internally, the kernel hides implementation details and manages the
multiple different file systems via an abstraction layer, that is, the virtual
file system (VFS)

®m The Linux VFS is designed around object-oriented principles and is
composed of four components:

e A set of definitions that define what a file object is allowed to look like
» The inode object structure represent an individual file

v

The file object represents an open file

v

The superblock object represents an entire file system

v

A dentry object represents an individual directory entry

Operating System Concepts Essentials — 2" Edition 15.46 Silberschatz, Galvin and Gagne ©2013

]

N

PN

iy File Systems (Cont.)

®m To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics

®m [Internally, the kernel hides implementation details and manages
the multiple different file systems via an abstraction layer, that is,
the virtual file system (VFS)

m The Linux VFS is designed around object-oriented principles and
layer of software to manipulate those objects with a set of
operations on the objects

e For example for the file object operations include (from struct
file_operations in /usr/include/linux/fs.h

int open(. . .) — Open afile

ssize tread(. . .) — Read from a file
ssize t write(. . .) — Write to a file
int mmap(. . .) — Memory-map a file

S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 15.47 Silberschatz, Galvin and Gagne ©2013

=1,

A { -
&r .« ml
Rt

a5

y The Linux ext3 File System

B ext3is standard on disk file system for Linux

e Uses a mechanism similar to that of BSD Fast File
System (FFS) for locating data blocks belonging to a
specific file

e Supersedes older extfs, ext2 file systems
e Work underway on ext4 adding features like extents

e Of course, many other file system choices with Linux
distros

Operating System Concepts Essentials — 2" Edition 15.48 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

)

«$»/ The Linux ext3 File System (Cont.)

B The main differences between ext2fs and FFS concern their disk
allocation policies

e |In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being
subdivided into fragments of 1Kb to store small files or partially filled
blocks at the end of a file

e ext3 does not use fragments; it performs its allocations in smaller
units

» The default block size on ext3 varies as a function of total size of
file system with support for 1, 2, 4 and 8 KB blocks

e ext3 uses cluster allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on disk, so
that it can submit an 1/0 request for several disk blocks as a single
operation on a block group

e Maintains bit map of free blocks in a block group, searches for free
byte to allocate at least 8 blocks at a time

= , v: \! :.‘

- /‘%‘R \l
o ‘%‘i‘r—('

X8

Operating System Concepts Essentials — 2" Edition 15.49 Silberschatz, Galvin and Gagne ©2013

£

"

; ﬁﬂmj' . . .
S Ext2fs Block-Allocation Policies

allocating scattered free blocks

L /1 AV /

allocating continuous free blocks

L

A 4

block in use block selected bit boundary
by allocator
free block —> bitmap search byte boundary

Operating System Concepts Essentials — 2" Edition 15.50 Silberschatz, Galvin and Gagne ©2013

J

1-1:;

P Journaling

m ext3 implements journaling, with file system updates first
written to a log file in the form of transactions

e Once in log file, considered committed

e Over time, log file transactions replayed over file system to
put changes in place

® On system crash, some transactions might be in journal but not
yet placed into file system

e Must be completed once system recovers

e No other consistency checking is needed after a crash
(much faster than older methods)

® |mproves write performance on hard disks by turning random
I/O into sequential I/O

Operating System Concepts Essentials — 2" Edition 15.51 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

g_,:..* The Linux Proc File System

B The proc file system does not store data, rather, its contents
are computed on demand according to user file 1/O requests

B proc must implement a directory structure, and the file contents
within; it must then define a unique and persistent inode
number for each directory and files it contains

e It uses this inode number to identify just what operation is
required when a user tries to read from a particular file
inode or perform a lookup in a particular directory inode

e When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places
it into the requesting process’ s read buffer

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 15.52 Silberschatz, Galvin and Gagne ©2013

y

N

{;1* Input and Output

s,

B The Linux device-oriented file system accesses disk storage
through two caches:

e Data is cached in the page cache, which is unified with the
virtual memory system

e Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block

®m Linux splits all devices into three classes:

e block devices allow random access to completely
independent, fixed size blocks of data

e character devices include most other devices; they don’ t
need to support the functionality of regular files

e network devices are interfaced via the kernel’ s networking
subsystem

AT \
£ T
> > o N

A

e o
W
\

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.53

y

-

,r"'?"-’"?'rj

Provide the main interface to all disk devices in a system
The block buffer cache serves two main purposes:

e it acts as a pool of buffers for active I1/O

e it serves as a cache for completed 1/O

B Therequest manager manages the reading and writing of buffer
contents to and from a block device driver

m Kernel 2.6 introduced Completely Fair Queueing (CFQ)
e Now the default scheduler
e Fundamentally different from elevator algorithms
e Maintains set of lists, one for each process by default

e Uses C-SCAN algorithm, with round robin between all
outstanding I/O from all processes

e Four blocks from each process put on at once

i > y“s“"‘; _.\;\l
o “%-(1
“l 29K

Operating System Concepts Essentials — 2" Edition 15.54 Silberschatz, Galvin and Gagne ©2013

g% Device-Driver Block Structure

user application

I
|
file system ! q b!ockﬂ character network
T ___el’f:f_'_e___ device file socket
/0 scheduler S ey
: line | protocol
______________________ | VU L) discipline | driver
T | ______ _
ek o SCelenEgey --—————-— - ————————
device lr“‘"““j ————— character network
driver | SCSI device device device
: driver driver driver

Operating System Concepts Essentials — 2" Edition 15.55 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

P Character Devices

B A device driver which does not offer random access to fixed
blocks of data

®m A character device driver must register a set of functions which
implement the driver’ s various file I/O operations

B The kernel performs almost no preprocessing of a file read or
write request to a character device, but simply passes on the
request to the device

B The main exception to this rule is the special subset of character
device drivers which implement terminal devices, for which the
kernel maintains a standard interface

i\

- 4 =
P

Wy
<hdhiy

Operating System Concepts Essentials — 2" Edition 15.56 Silberschatz, Galvin and Gagne ©2013

]

N

g :
S Character Devices (Cont.)

m Line disciplineis an interpreter for the information from the
terminal device

e The most common line discipline is tty discipline, which glues
the terminal’'s data stream onto standard input and output
streams of user’s running processes, allowing processes to
communicate directly with the user’s terminal

e Several processes may be running simultaneously, tty line
discipline responsible for attaching and detaching terminal’s
Input and output from various processes connected to it as
processes are suspended or awakened by user

e Other line disciplines also are implemented have nothing to
do with I/O to user process — i.e. PPP and SLIP networking
protocols

S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 15.57 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

P Interprocess Communication

m Like UNIX, Linux informs processes that an event has occurred
via signals

m There is a limited number of signals, and they cannot carry
information: Only the fact that a signal occurred is available to a
process

® The Linux kernel does not use signals to communicate with
processes with are running in kernel mode, rather,
communication within the kernel is accomplished via scheduling
states and wait_queue structures

m Also implements System V Unix semaphores
e Process can wait for a signal or a semaphore
e Semaphores scale better
e Operations on multiple semaphores can be atomic

i\

- 4 =
P

Wy
<hdhiy

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 15.58

y

-

.

4%’ Passing Data Between Processes

B The pipe mechanism allows a child process to inherit a
communication channel to its parent, data written to one end
of the pipe can be read a the other

m Shared memory offers an extremely fast way of
communicating; any data written by one process to a shared
memory region can be read immediately by any other
process that has mapped that region into its address space

B To obtain synchronization, however, shared memory must
be used in conjunction with another Interprocess-
communication mechanism

Operating System Concepts Essentials — 2" Edition 15.59 Silberschatz, Galvin and Gagne ©2013

-,
<

-

. L Network Structure

>

m Networking is a key area of functionality for Linux

e It supports the standard Internet protocols for UNIX to UNIX
communications

e It also implements protocols native to non-UNIX operating systems, in
particular, protocols used on PC networks, such as Appletalk and IPX

®m [nternally, networking in the Linux kernel is implemented by three
layers of software:

e The socket interface
e Protocol drivers
e Network device drivers

® Most important set of protocols in the Linux networking system is the
internet protocol suite
e It implements routing between different hosts anywhere on the network

e On top of the routing protocol are built the UDP, TCP and ICMP protocols

m Packets also pass to firewall management for filtering based on
firewall chains of rules

= , v: \ :.‘

& P /‘%{; _'\.\}l
o ‘%‘i‘r—('

29

Operating System Concepts Essentials — 2" Edition 15.60 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

<5 Security

m The pluggable authentication modules (PAM) system is
available under Linux

®m PAM is based on a shared library that can be used by any
system component that needs to authenticate users

m Access control under UNIX systems, including Linux, is
performed through the use of unique numeric identifiers (uid
and gid)

m Access control is performed by assigning objects a protections
mask, which specifies which access modes—read, write, or
execute—are to be granted to processes with owner, group, or
world access

Operating System Concepts Essentials — 2" Edition 15.61 Silberschatz, Galvin and Gagne ©2013

o

1-1:;

S Security (Cont.)

® Linux augments the standard UNIX setuid mechanism in two
ways:
e Itimplements the POSIX specification’ s saved user-id
mechanism, which allows a process to repeatedly drop and
reacquire its effective uid

e It has added a process characteristic that grants just a
subset of the rights of the effective uid

® Linux provides another mechanism that allows a client to
selectively pass access to a single file to some server process
without granting it any other privileges

,_"""-:'l

i > y“s“"‘; _.\;\l
ig “%—(:

“l 29K

Operating System Concepts Essentials — 2" Edition 15.62 Silberschatz, Galvin and Gagne ©2013

End of Chapter 15

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 15: �The Linux System
	Chapter 15: The Linux System
	Objectives
	History
	The Linux Kernel
	Linux 2.0
	The Linux System
	Linux Distributions
	Linux Licensing
	Design Principles
	Components of a Linux System
	Components of a Linux System
	Components of a Linux System (Cont.)
	Kernel Modules
	Module Management
	Driver Registration
	Conflict Resolution
	Process Management
	Process Identity
	Process Environment
	Process Context
	Process Context (Cont.)
	Processes and Threads
	Scheduling
	CFS
	CFS (Cont.)
	Kernel Synchronization
	Kernel Synchronization (Cont.)
	Kernel Synchronization (Cont.)
	Interrupt Protection Levels
	Symmetric Multiprocessing
	Memory Management
	Managing Physical Memory
	Managing Physical Memory (Cont.)
	Splitting of Memory in a Buddy Heap
	Slab Allocator in Linux
	Virtual Memory
	Virtual Memory (Cont.)
	Virtual Memory (Cont.)
	Swapping and Paging
	Kernel Virtual Memory
	Executing and Loading User Programs
	Memory Layout for ELF Programs
	Static and Dynamic Linking
	Static and Dynamic Linking (Cont.)
	File Systems
	File Systems (Cont.)
	The Linux ext3 File System
	The Linux ext3 File System (Cont.)
	Ext2fs Block-Allocation Policies
	Journaling
	The Linux Proc File System
	Input and Output
	Block Devices
	Device-Driver Block Structure
	Character Devices
	Character Devices (Cont.)
	Interprocess Communication
	Passing Data Between Processes
	Network Structure
	Security
	Security (Cont.)
	End of Chapter 15

