Chapter 8: Virtual Memory

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

Ry

PN

G Chapter 8: Virtual Memory

Background

Demand Paging
Copy-on-Write

Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations

Operating-System Examples

Ja .\.\l. ¥
D - I::I
F. T
%
“l A% A

Operating System Concepts Essentials — 2"d Edition 8.2 Silberschatz, Galvin and Gagne ©2013

PN

ST Objectives

&

B To describe the benefits of a virtual memory system

m To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

B To discuss the principle of the working-set model

® To examine the relationship between shared memory and
memory-mapped files

m To explore how kernel memory is managed

Operating System Concepts Essentials — 2" Edition 8.3 Silberschatz, Galvin and Gagne ©2013

‘|

N

§F Background

s,

m Code needs to be in memory to execute, but entire program rarely
used

e Error code, unusual routines, large data structures
® Entire program code not needed at same time
m Consider ability to execute partially-loaded program
e Program no longer constrained by limits of physical memory

e Each program takes less memory while running -> more
programs run at the same time

» Increased CPU utilization and throughput with no increase
In response time or turnaround time

e Less I/O needed to load or swap programs into memory ->
each user program runs faster

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 8.4 Silberschatz, Galvin and Gagne ©2013

e N
-
ﬁﬁ.%l

L (i %{r y

Background (Cont.)

m Virtual memory — separation of user logical memory from
physical memory

Only part of the program needs to be in memory for execution

Logical address space can therefore be much larger than physical
address space

Allows address spaces to be shared by several processes
Allows for more efficient process creation

More programs running concurrently

Less I/O needed to load or swap processes

Operating System Concepts Essentials — 2" Edition 8.5 Silberschatz, Galvin and Gagne ©2013

G5 Background (Cont.)

m Virtual address space — logical view of how process is
stored in memory

e Usually start at address 0, contiguous addresses until end of
space

e Meanwhile, physical memory organized in page frames
e MMU must map logical to physical

® Virtual memory can be implemented via:
e Demand paging
e Demand segmentation

Operating System Concepts Essentials — 2" Edition 8.6 Silberschatz, Galvin and Gagne ©2013

=™

&f,};ﬁf Virtual Memory That is Larger Than Physical Memory

page 0

page 1

page 2 N
= B E

\ ~NmEmE
EEE

——>bO E &

EEE
o -

[\

page v physical
; memory
virtual

memory

Operating System Concepts Essentials — 2" Edition 8.7 Silberschatz, Galvin and Gagne ©2013

‘|

N

s,

-

G Virtual-address Space
®m Usually design logical address space for Max
stack to start at Max logical address and
grow “down” while heap grows “up” stack

e Maximizes address space use

e Unused address space between
the two is hole

» No physical memory needed
until heap or stack grows to a
given new page

m Enables sparse address spaces with
holes left for growth, dynamically linked

libraries, etc reeb
m System libraries shared via mapping into

virtual address space data
®m Shared memory by mapping pages read-

write into virtual address space code

m Pages can be shared during fork(), 0
speeding process creation S
[B

Operating System Concepts Essentials — 2" Edition 8.8 Silberschatz, Galvin and Gagne ©2013

Shared Library Using Virtual Memory

stack

l

stack

shared library

shared
pages

l

shared library

heap

data

code

Operating System Concepts Essentials — 2" Edition

8.9

heap

data

code

4 't ."\"'\l'- |
___;?‘Ségg
B
“l i3]

Silberschatz, Galvin and Gagne ©2013

=

P> Demand Paging

®m Could bring entire process into memory

at load time
m Or bring a page into memory only when
it is needed
<
e Less I/O needed, no unnecessary . N A
1/O
t & N [2
e Less memory needed - o A
e Faster response
e More users ’ e °-
® Similar to paging system with swapping ot RN
(diagram on right) PR "= swapin 1601171181190
m Pageis needed = reference to it 7 20(21 [122]23[]
e invalid reference = abort e
® not-in-memory = bring to memory
m |Lazy swapper — never swaps a page main

memory

into memory unless page will be needed

e Swapper that deals with pages is a
pager

Operating System Concepts Essentials — 2"d Edition 8.10 Silberschatz, Galvin and Gagne ©2013

y

-

,r"'?"-’"?'rj

o Basic Concepts

m With swapping, pager guesses which pages will be used before
swapping out again

®m Instead, pager brings in only those pages into memory
® How to determine that set of pages?
e Need new MMU functionality to implement demand paging
m |If pages needed are already memory resident
e No difference from non demand-paging
m If page needed and not memory resident
e Need to detect and load the page into memory from storage
» Without changing program behavior
» Without programmer needing to change code

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 8.11 Silberschatz, Galvin and Gagne ©2013

!

{ ca

S Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memaory)

®m [nitially valid—invalid bit is set to i on all entries
m Example of a page table snapshot:

Frame # valid-invalid bit

< < <

page table

® During MMU address translation, if valid—invalid bit in page table
entry is i = page fault

Operating System Concepts Essentials — 2" Edition 8.12 Silberschatz, Galvin and Gagne ©2013

»

5&% Page Table When Some Pages Are Not in Main Memory

X

Lo

0 A 2
valid—invalid
1 B frame bit 3 A
_//
2] C ol 4 v 4 A
3 D 1 i E D D D
2| 6 |V
4 al i 6/ C |]
5 [4 i 7
5 G 5/ 9 v g @
6 i
7 H 7 [9 F
logical page table 10
memory — D D D
11
_//
12
13
14
15

physical memory

Operating System Concepts Essentials — 2" Edition 8.13 Silberschatz, Galvin and Gagne ©2013

m If there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory
Find free frame
3. Swap page into frame via scheduled disk operation

Reset tables to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

Operating System Concepts Essentials — 2" Edition 8.14 Silberschatz, Galvin and Gagne ©2013

“¢¥7 Steps in Handling a Page Fault

page is on
backing store

load M

\v

operating
system @
reference
@ trap
> \ ‘ [
restart page table
instruction
free frame
reset page
table
physical
memory
8.15

Operating System Concepts Essentials — 2" Edition

e
bring in
missing page

Silberschatz, Galvin and Gagne ©2013

A
r;}!

» "'?'-"?'.\-1

i

~$»7 Aspects of Demand Paging

B Extreme case — start process with no pages in memory

e OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

e And for every other process pages on first access
e Pure demand paging

m Actually, a given instruction could access multiple pages -> multiple
page faults

e Consider fetch and decode of instruction which adds 2 numbers
from memory and stores result back to memory

e Pain decreased because of locality of reference
m Hardware support needed for demand paging
e Page table with valid / invalid bit
e Secondary memory (swap device with swap space)
e Instruction restart

£, .v. Al
o &-{

L

Operating System Concepts Essentials — 2" Edition 8.16 Silberschatz, Galvin and Gagne ©2013

" .
e w—f Instruction Restart

B Consider an instruction that could access several different locations
e block move

e auto increment/decrement location
e Restart the whole operation?
» What if source and destination overlap?

/‘» """

Operating System Concepts Essentials — 2" Edition 8.17 Silberschatz, Galvin and Gagne ©2013

=

~
,r"'?"-’"?'rj

~$»7 Performance of Demand Paging

Stages in Demand Paging (worse case)

Trap to the operating system

Save the user registers and process state

Determine that the interrupt was a page fault

Check that the page reference was legal and determine the location of the page on the disk

a ~ 0N = B

Issue a read from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
While waiting, allocate the CPU to some other user
Receive an interrupt from the disk 1/0O subsystem (I/0O completed)
Save the registers and process state for the other user

© © N o

Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then resume the
interrupted instruction

Operating System Concepts Essentials — 2" Edition 8.18 Silberschatz, Galvin and Gagne ©2013

N

{;i Performance of Demand Paging (Cont.)

® Three major activities

e Service the interrupt — careful coding means just several hundred
instructions needed

e Read the page - lots of time
e Restart the process — again just a small amount of time
B Page FaultRate0<p<1
e if p =0 no page faults
e if p=1, every reference is a fault
m Effective Access Time (EAT)
EAT = (1 — p) X memory access
+ p (page fault overhead
+ swap page out
+ swap page in)

Operating System Concepts Essentials — 2" Edition 8.19 Silberschatz, Galvin and Gagne ©2013

J

1-1:;

P

o

o Demand Paging Example

®m Memory access time = 200 nanoseconds
Average page-fault service time = 8 milliseconds
EAT = (1 —p) x 200 + p (8 milliseconds)
=(1-p x200 + p x 8,000,000
=200 + p x 7,999,800
m If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!
m [f want performance degradation < 10 percent

e 220> 200 + 7,999,800 x p
20> 7,999,800 x p

e p <.0000025
e < one page fault in every 400,000 memory accesses

e S|

p -
a0
B
/

AP0

Operating System Concepts Essentials — 2" Edition 8.20 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

,r"'?"-’"?'rj

«4%> Demand Paging Optimizations

m Swap space I/O faster than file system I/O even if on the same device

e Swap allocated in larger chunks, less management needed than file
system

m Copy entire process image to swap space at process load time
e Then page in and out of swap space
e Used in older BSD Unix

®m Demand page in from program binary on disk, but discard rather than paging
out when freeing frame

e Used in Solaris and current BSD
e Sitill need to write to swap space

» Pages not associated with a file (like stack and heap) — anonymous
memory

» Pages modified in memory but not yet written back to the file system
® Mobile systems
e Typically don’t support swapping

e Instead, demand page from file system and reclaim read-only pages
(such as code)

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 8.21 Silberschatz, Galvin and Gagne ©2013

‘|

N

s,

,r"'?"-’"?'rj

T Copy-on-Write

m Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

e |If either process modifies a shared page, only then is the page copied

m COW allows more efficient process creation as only modified pages are
copied

® [n general, free pages are allocated from a pool of zero-fill-on-demand
pages

e Pool should always have free frames for fast demand page execution

» Don’t want to have to free a frame as well as other processing on
page fault

e Why zero-out a page before allocating it?

m vfork() variation on fork() system call has parent suspend and child
using copy-on-write address space of parent

e Designed to have child call exec()

e Very efficient

Operating System Concepts Essentials — 2" Edition 8.22 Silberschatz, Galvin and Gagne ©2013

=

~“%»/ Before Process 1 Modifies Page C

physical
process, memory process,

| [pageA e

- L—— pageB «—
—> page C —]

Operating System Concepts Essentials — 2" Edition 8.23 Silberschatz, Galvin and Gagne ©2013

«g®’ After Process 1 Modifies Page C

physical

process, memory process,

A

_|—> page A
S page B «—
page C —1]

—» Copy of page C

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.24

B

{ -
ol W"l

“$»7 What Happens if There is no Free Frame?

Used up by process pages
Also in demand from the kernel, 1/O buffers, etc
How much to allocate to each?

Page replacement — find some page in memory, but not really in
use, page it out

e Algorithm — terminate? swap out? replace the page?

e Performance — want an algorithm which will result in minimum
number of page faults

B Same page may be brought into memory several times

-

)

Y

Operating System Concepts Essentials — 2" Edition 8.25 Silberschatz, Galvin and Gagne ©2013

g Page Replacement

m Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page
transfers — only modified pages are written to disk

m Page replacement completes separation between logical
memory and physical memory — large virtual memory can
be provided on a smaller physical memory

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.26

gt Need For Page Replacement

valid—invalid
0 H frame bit 0| monitor
Ny A 1 l <
0a V/
PC —> S |V
2| 4 |v 2| D
5 |v
3| M i 3| H 5
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
M
valid—invalid 7 E
o A frame bit
¥ physical
1 B 6 |v memory p/
2| D i
2 |v
3 = 7|V
logical memory ~ Page table
for user 2 for user 2

Operating System Concepts Essentials — 2"d Edition 8.27 Silberschatz, Galvin and Gagne ©2013

G Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to
select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault — increasing EAT

/‘»ﬂ \1

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.28

L Page Replacement

frame valid—invalid bit

N Y <
N

swap out

0 | i to invalid @ page
v /
@ ‘:

f| wvictim

reset page
table for ™
page table now page <:>swap %Hhhwxxxxhhh
desired
page in

physical
memory

Operating System Concepts Essentials — 2" Edition 8.29 Silberschatz, Galvin and Gagne ©2013

=

P

“$»7 Page and Frame Replacement Algorithms

m Frame-allocation algorithm determines
e How many frames to give each process
e Which frames to replace
m Page-replacement algorithm
e Want lowest page-fault rate on both first access and re-access

m Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string

e Sitring is just page numbers, not full addresses
e Repeated access to the same page does not cause a page fault
e Results depend on number of frames available

®m In all our examples, the reference string of referenced page
numbers is

7,0,1,2,0,3,04,2,3,0,3,0,3,2,1,2,0,1,7,0,1

/‘»““ \1

Operating System Concepts Essentials — 2"d Edition 8.30 Silberschatz, Galvin and Gagne ©2013

=
w7’ Graph of Page Faults Versus The Number of Frames

16

d

S

number of page faults

(N R 2 B o o)

1 2 3 4 5 6
number of frames

Operating System Concepts Essentials — 2" Edition 8.31 Silberschatz, Galvin and Gagne ©2013

N

MI’—?LV First-In-First-Out (FIFO) Algorithm

m Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
m 3 frames (3 pages can be in memory at a time per process)

reference string
0 4 2 3 0 3 2

page frames

15 page faults
m Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

e Adding more frames can cause more page faults!
» Belady’ s Anomaly
® How to track ages of pages?
e Just use a FIFO queue

\
‘“\:_

Operating System Concepts Essentials — 2" Edition 8.32 Silberschatz, Galvin and Gagne ©2013

FIFO lllustrating Belady’ s Anomaly

number of page faults
S ™
®

nNo B » (0 0]
“
@

1 2 3 4 5 6 7
number of frames

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2"d Edition 8.33

G5 Optimal Algorithm

m Replace page that will not be used for longest period of time
e 9is optimal for the example

®m How do you know this?
e Can’tread the future

m Used for measuring how well your algorithm performs

reference string
o 3 0 4 2 3 0 3 2 7 0 1

IIII I I I I E
1

page frames

Operating System Concepts Essentials — 2" Edition 8.34 Silberschatz, Galvin and Gagne ©2013

=1,

‘%s""""l Least Recently Used (LRU) Algorithm

m Use past knowledge rather than future
B Replace page that has not been used in the most amount of time
m Associate time of last use with each page

reference string
7 0 1 2 0 3 0 4 2 3 O 2 0 1 7 0 1

m 12 faults — better than FIFO but worse than OPT
m Generally good algorithm and frequently used

page frames

® But how to implement?

Operating System Concepts Essentials — 2" Edition 8.35 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

57 LRU Algorithm (Cont.)

® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to find
smallest value

» Search through table needed
m Stack implementation
e Keep a stack of page numbers in a double link form:
e Page referenced:
» move it to the top
» requires 6 pointers to be changed
e But each update more expensive
e No search for replacement

B LRU and OPT are cases of stack algorithms that don’ t have
Belady’ s Anomaly

£\
3 ﬂ"%;; B
o h“%—(

A9

Operating System Concepts Essentials — 2" Edition 8.36 Silberschatz, Galvin and Gagne ©2013

&ﬂf:-:g)—i Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

Al

Operating System Concepts Essentials — 2"d Edition 8.37 Silberschatz, Galvin and Gagne ©2013

_'h

=
ﬂ'@"’*l

r o LRU Approximation Algorithms

® LRU needs special hardware and still slow
m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace any with reference bit = 0O (if one exists)
» We do not know the order, however
m Second-chance algorithm
e Generally FIFO, plus hardware-provided reference bit
e Clock replacement
e If page to be replaced has
» Reference bit = 0 -> replace it
» reference bit = 1 then:
set reference bit 0, leave page in memory
replace next page, subject to same rules

/"»ﬁ -\1

Operating System Concepts Essentials — 2" Edition 8.38 Silberschatz, Galvin and Gagne ©2013

Qm;r/ Second-Chance (clock) Page-Replacement Algorithm

next
victim

circular queue of pages

(a)

Al

Operating System Concepts Essentials — 2nd Edition 8.39 Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

.,:.ﬁ Enhanced Second-Chance Algorithm

® Improve algorithm by using reference bit and modify bit (if
available) in concert

m Take ordered pair (reference, modify)
(0, 0) neither recently used not modified — best page to replace

2. (0, 1) not recently used but modified — not quite as good, must
write out before replacement

3. (1, 0) recently used but clean — probably will be used again soon

4. (1, 1) recently used and modified — probably will be used again
soon and need to write out before replacement

®m When page replacement called for, use the clock scheme but
use the four classes replace page in lowest non-empty class

e Might need to search circular queue several times

SE
o ‘i‘i‘;{'
AP0

Operating System Concepts Essentials — 2" Edition 8.40 Silberschatz, Galvin and Gagne ©2013

4

o . "
ot Counting Algorithms

m Keep a counter of the number of references that have been made
to each page

e Not common

m [ease Frequently Used (LFU) Algorithm: replaces page with
smallest count

m Most Frequently Used (MFU) Algorithm: based on the argument
that the page with the smallest count was probably just brought in
and has yet to be used

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.41

]

1-1:;

> "'?‘-’"?'rj

w/ Page-Buffering Algorithms

m Keep a pool of free frames, always
e Then frame available when needed, not found at fault time

e Read page into free frame and select victim to evict and add
to free pool

e When convenient, evict victim
B Possibly, keep list of modified pages

e When backing store otherwise idle, write pages there and set
to non-dirty

m Possibly, keep free frame contents intact and note what is in them

e If referenced again before reused, no need to load contents
again from disk

e Generally useful to reduce penalty if wrong victim frame
selected

‘._\I""-:'\

i > y“s“"‘; _.\;\l
o “%-(

“l 29K

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.42

=

) el : :
«g»’ Applications and Page Replacement

m All of these algorithms have OS guessing about future page
access

B Some applications have better knowledge — i.e. databases
B Memory intensive applications can cause double buffering
e OS keeps copy of page in memory as |/O buffer
e Application keeps page in memory for its own work

B Operating system can given direct access to the disk, getting out
of the way of the applications

e Raw disk mode
®m Bypasses buffering, locking, etc

o
P’
7N
S

/

UL

Operating System Concepts Essentials — 2" Edition 8.43 Silberschatz, Galvin and Gagne ©2013

G Allocation of Frames

Each process needs minimum number of frames
Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to
®m Maximum of course is total frames in the system
® Two major allocation schemes
e fixed allocation
e priority allocation
® Many variations

Operating System Concepts Essentials — 2" Edition 8.44 Silberschatz, Galvin and Gagne ©2013

A
,;:j

> "'?‘-’"?'rj

g Fixed Allocation

m Equal allocation — For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames

e Keep some as free frame buffer pool

®m Proportional allocation — Allocate according to the size of process
e Dynamic as degree of multiprogramming, process sizes

change

9 m=64
— S; =size of process p, s1=10
—S=3Ys s, =127
— m = total number of frames alzﬂx62z4

S 137
= ' ——

— a; = allocation for p s XM a - %x@ 57

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.45

g Priority Allocation

m Use a proportional allocation scheme using priorities rather
than size

m If process P, generates a page fault,
e select for replacement one of its frames

e select for replacement a frame from a process with lower
priority number

Operating System Concepts Essentials — 2" Edition 8.46 Silberschatz, Galvin and Gagne ©2013

o Global vs. Local Allocation

m Global replacement — process selects a replacement frame
from the set of all frames; one process can take a frame from
another

e But then process execution time can vary greatly
e But greater throughput so more common

m Local replacement — each process selects from only its own
set of allocated frames

e More consistent per-process performance
e But possibly underutilized memory

Operating System Concepts Essentials — 2" Edition 8.47 Silberschatz, Galvin and Gagne ©2013

-,
<
)
-

=%/ Non-Uniform Memory Access

m So far all memory accessed equally
® Many systems are NUMA — speed of access to memory varies

e Consider system boards containing CPUs and memory,
interconnected over a system bus

m Optimal performance comes from allocating memory “close to”
the CPU on which the thread is scheduled

e And modifying the scheduler to schedule the thread on the
same system board when possible

e Solved by Solaris by creating Igroups
» Structure to track CPU / Memory low latency groups
» Used my schedule and pager

» When possible schedule all threads of a process and
allocate all memory for that process within the Igroup

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 8.48 Silberschatz, Galvin and Gagne ©2013

]
1-{‘"_

P

S Thrashing

Ay

m If a process does not have “enough” pages, the page-fault rate is
very high

e Page fault to get page
e Replace existing frame
e But quickly need replaced frame back
e This leads to:
» Low CPU utilization

» Operating system thinking that it needs to increase the
degree of multiprogramming

» Another process added to the system

m Thrashing = a process is busy swapping pages in and out

/‘»““ -'\1

Operating System Concepts Essentials — 2" Edition 8.49 Silberschatz, Galvin and Gagne ©2013

4

g5 Thrashing (Cont.)

|
| thrashing

CPU utilization

degree of multiprogramming

Operating System Concepts Essentials — 2" Edition 8.50 Silberschatz, Galvin and Gagne ©2013

Ry

4% Demand Paging and Thrashing

® Why does demand paging work?
Locality model

e Process migrates from one locality to another
e Localities may overlap

®m Why does thrashing occur?
> size of locality > total memory size

e Limit effects by using local or priority page replacement

Operating System Concepts Essentials — 2" Edition 8.51 Silberschatz, Galvin and Gagne ©2013

N

«g%7 Locality In A Memory-Reference Pattern
T ii‘ ““ e ||J| Hlli :i"' F”' "f""i“l il mumuu:\ I \|“‘:‘l|‘

2| L P

- AT
i “‘l S | ” E”” Wll \' |l‘u H”‘t K ‘ ||.it|
L \IH ‘ IHH“H‘ |\|I\ "H w “JHI' \!"'
30 T H f ! L “ PR —
”||‘ M ‘\H MWM” 1H [l ‘H ‘”: | l \|”|\HI|H‘|\HIH|I I ||Hu\ : n "
28
§_26 ~
£
£

L e b . AL H\IHI‘ ‘ | h " |
AT et I

;,fiil l‘nhl yupi ““”"'M "I} S H||\ _

T E TR NN i
. ‘; ”“ WH‘” ”\‘”\i”“” il ‘ uh‘nw “ m‘:L iy

I I il :M | M’ |M\I|
» . T R
& 20 :i | il HH i HH h ‘ ‘I B 11 1 IR l!] o ‘
E i oo "l‘HHH‘\H ACCEE LR e
c R o ' L i -
© T ‘ ; mn LRI i o '
"“‘I { | !l Hw A HH‘H) H" :
ol . HHnHU It H!HH !.!1|| ‘.U\m L T o
SA5Y
execution time ——- oS wﬁ\\%‘}
“d A9

Operating System Concepts Essentials — 2" Edition 8.52 Silberschatz, Galvin and Gagne ©2013

N

5 Working-Set Model

&

s,

m A =working-set window = a fixed number of page references
Example: 10,000 instructions

m WSS, (working set of Process P)) =
total number of pages referenced in the most recent A (varies in time)

e if A too small will not encompass entire locality
e if A too large will encompass several localities
e if A =00 = will encompass entire program

m D =X WSS, = total demand frames
e Approximation of locality

m if D> m = Thrashing

m Policy if D > m, then suspend or swap out one of the processes

page reference table
. ..2615777751623412344434344413234443444...

-

L by

WS(t,) ={1,2,5,6,7} WS(t,) ={3,4}

¥ 3

Operating System Concepts Essentials — 2"d Edition 8.53 Silberschatz, Galvin and Gagne ©2013

("

w & Keeping Track of the Working Set

m Approximate with interval timer + a reference bit
m Example: A =10,000
e Timer interrupts after every 5000 time units
e Keep in memory 2 bits for each page

e Whenever a timer interrupts copy and sets the values of all
reference bits to 0

e If one of the bits in memory = 1 = page in working set
®m Why is this not completely accurate?
B Improvement = 10 bits and interrupt every 1000 time units

/"»ﬁ -\1

Operating System Concepts Essentials — 2" Edition 8.54 Silberschatz, Galvin and Gagne ©2013

=1,

{ -
ﬁﬁ-%l

G5 Page-Fault Frequency

® More direct approach than WSS

m Establish “acceptable” page-fault frequency (PFF) rate
and use local replacement policy

e If actual rate too low, process loses frame
e If actual rate too high, process gains frame

A

% increase number
o of frames
§ upper bound
o)
(@)]
®©
Q.
lower bound
decrease number
of frames

v

number of frames

Operating System Concepts Essentials — 2"d Edition 8.55 Silberschatz, Galvin and Gagne ©2013

=

{-325 Working Sets and Page Fault Rates

m Direct relationship between working set of a process and its
page-fault rate

Working set changes over time
Peaks and valleys over time

working set
1
page
fault
rate
0 >
time

SR

e]
a7

ol

Operating System Concepts Essentials — 2"d Edition 8.56 Silberschatz, Galvin and Gagne ©2013

J

N

PN

N . 2

Memory-Mapped Files

Operating System Concepts Essentials — 2" Edition 8.57 Silberschatz, Galvin and Gagne ©2013

Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

A file is initially read using demand paging

e A page-sized portion of the file is read from the file system into
a physical page

e Subsequent reads/writes to/from the file are treated as
ordinary memory accesses

Simplifies and speeds file access by driving file I/O through
memory rather than read() and write() system calls

Also allows several processes to map the same file allowing the
pages in memory to be shared

But when does written data make it to disk?
e Periodically and / or at file close() time

e For example, when the pager scans for dirty pages

o > ,t ‘-'\ii
& : _71; \.‘N_;

i

]

Y
=

N

)

o f

Memory-Mapped File Technique for all I/O

Operating System Concepts Essentials — 2" Edition 8.58 Silberschatz, Galvin and Gagne ©2013

Some OSes uses memory mapped files for standard 1/O

Process can explicitly request memory mapping a file via mmap ()
system call

e Now file mapped into process address space
For standard 1/O (open(), read(), write(), close()), mmap
anyway
e But map file into kernel address space
e Process still does read() and write()
» Copies data to and from kernel space and user space
e Uses efficient memory management subsystem
» Avoids needing separate subsystem
COW can be used for read/write non-shared pages

Memory mapped files can be used for shared memory (although
again via separate system calls)

N \,: \
=S
Oa

i

P Memory Mapped Files

r=-=--- 1

Ry

i'_r__'|'_ 3

T L---- SR e

I ¢ = I _,_L

2 o N 8 <« I': I 0

3 fd---r! ~rtrr1_ 6
4 i, A
5 it~ 6 3"::':
6 _%'l':_'f’ ||: |
|:| I L
A R A LR

_processA : [:_____; 5 «---! : : 'processB
virtual memory | D : , Virtual memory
(I !
|
R e e | EEL
‘_______: 2 <- H
physical memory
—] [—
(1]2]3]4]5]6]
disk file

S 3 Wl
S e W |
A Y
ol A%

Operating System Concepts Essentials — 2" Edition 8.59 Silberschatz, Galvin and Gagne ©2013

™

.

&i\%,.x Shared Memory via Memory-Mapped I/O

process;

memory

Operating System Concepts Essentials — 2"d Edition

shared o

memory-mapped
~. file

shared
memory

8.60

Process,

shared
memory

Silberschatz, Galvin and Gagne ©2013

¥ |

s" Shared Memory in Windows API

m First create a file mapping for file to be mapped

e Then establish a view of the mapped file in process’s virtual
address space

m Consider producer / consumer

e Producer create shared-memory object using memory mapping
features

e Open file via CreateFile(), returning a HANDLE

e Create mapping via CreateFileMapping() creating a
named shared-memory object

e Create view via MapViewOfFile()
B Sample code in Textbook

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.61

Ry

Mml .
m.—f Allocating Kernel Memory

®m Treated differently from user memory
m Often allocated from a free-memory pool
e Kernel requests memory for structures of varying sizes
e Some kernel memory needs to be contiguous
» |.e. for device 1/O

/‘» """

Operating System Concepts Essentials — 2" Edition 8.62 Silberschatz, Galvin and Gagne ©2013

A
r;‘;‘l

PN

L S5 Budd Yy SyS tem

m Allocates memory from fixed-size segment consisting of physically-
contiguous pages

®m Memory allocated using power-of-2 allocator
e Satisfies requests in units sized as power of 2
e Request rounded up to next highest power of 2

e When smaller allocation needed than is available, current chunk
split into two buddies of next-lower power of 2

» Continue until appropriate sized chunk available
m For example, assume 256KB chunk available, kernel requests 21KB
e Splitinto A, 4 Ar Of 128KB each
» One further divided into B, and By of 64KB

One further into C, and Cy of 32KB each — one used to

satisfy request
m Advantage — quickly coalesce unused chunks into larger chunk
® Disadvantage - fragmentation /ﬂw .:;\;i}
[X

Operating System Concepts Essentials — 2" Edition 8.63 Silberschatz, Galvin and Gagne ©2013

g,,-x Buddy System Allocator

physically contiguous pages

256 KB

128 KB 128 KB

64 KB 64 KB
BR
32 KB 32 KB
L R

Operating System Concepts Essentials — 2" Edition 8.64

Silberschatz, Galvin and Gagne ©2013

g Slab Allocator

Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs

Single cache for each unique kernel data structure

e Each cache filled with objects — instantiations of the data
structure

When cache created, filled with objects marked as free
® When structures stored, objects marked as used

m If slab is full of used objects, next object allocated from empty
slab

e If no empty slabs, new slab allocated

®m Benefits include no fragmentation, fast memory request
satisfaction

Operating System Concepts Essentials — 2" Edition 8.65 Silberschatz, Galvin and Gagne ©2013

GF Slab Allocation

kernel objects caches slabs

- Y
3-KB ™~
objects i

physically
contiguous
pages

—
7-KB e _
objects T L
/

Operating System Concepts Essentials — 2"d Edition 8.66 Silberschatz, Galvin and Gagne ©2013

g T Slab Allocator in Linux

m For example process descriptor is of type struct task struct
m Approx 1.7KB of memory
m New task -> allocate new struct from cache

e Will use existing free struct task struct
m Slab can be in three possible states

1. Full —all used

2. Empty — all free

3. Partial — mix of free and used
m Upon request, slab allocator

1. Uses free struct in partial slab

2. If none, takes one from empty slab

3. If no empty slab, create new empty

/‘»““ -'\1

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.67

=

{ s
o

. Slab Allocator in Linux (Cont.)

m Slab started in Solaris, now wide-spread for both kernel mode and
user memory in various OSes

B Linux 2.2 had SLAB, now has both SLOB and SLUB allocators
e SLOB for systems with limited memory

» Simple List of Blocks — maintains 3 list objects for small,
medium, large objects

e SLUB is performance-optimized SLAB removes per-CPU
gueues, metadata stored in page structure

Operating System Concepts Essentials — 2" Edition 8.68 Silberschatz, Galvin and Gagne ©2013

=

,f‘.w"fl
%

“§%7 Other Considerations -- Prepaging

® Prepaging

e To reduce the large number of page faults that occurs at
process startup

e Prepage all or some of the pages a process will need, before
they are referenced

e Butif prepaged pages are unused, I/O and memory was wasted
e Assume s pages are prepaged and a of the pages is used

» Is cost of s * a save pages faults > or < than the cost of
prepaging
s * (1- a) unnecessary pages”?

» anear zero = prepaging loses

/‘»““ '\1

Operating System Concepts Essentials — 2" Edition 8.69 Silberschatz, Galvin and Gagne ©2013

G Other Issues — Page Size

m Sometimes OS designers have a choice
e Especially if running on custom-built CPU
m Page size selection must take into consideration:
e Fragmentation
e Page table size
e Resolution
e 1/O overhead
e Number of page faults
e Locality
e TLB size and effectiveness

m Always power of 2, usually in the range 212 (4,096 bytes) to 222
(4,194,304 bytes)

m On average, growing over time

Operating System Concepts Essentials — 2" Edition 8.70 Silberschatz, Galvin and Gagne ©2013

J

1-1:;

57 Other Issues — TLB Reach

m TLB Reach - The amount of memory accessible from the TLB
B TLB Reach = (TLB Size) X (Page Size)

m I|deally, the working set of each process is stored in the TLB
e Otherwise there is a high degree of page faults

®m Increase the Page Size

e This may lead to an increase in fragmentation as not all
applications require a large page size

® Provide Multiple Page Sizes

e This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 8.71 Silberschatz, Galvin and Gagne ©2013

T

4.-1_;‘_

g
g% Other Issues — Program Structure

® Program structure
e INt[128,128] data;
e Each row is stored in one page
e Program 1

128 x 128 = 16,384 page faults

e Program 2
for (1 = 0; 1 < 128; 1++)
for (J = 0; jJ < 128; j++)
data[i,j] = O;

128 page faults

Operating System Concepts Essentials — 2"d Edition 8.72 Silberschatz, Galvin and Gagne ©2013

4

«

an;:i Other Issues — I/O interlock

m |/O Interlock — Pages must
sometimes be locked into memory

m Consider I/O - Pages that are used
for copying a file from a device

must be locked from being selected " buttr < =D
for eviction by a page replacement p—
algorithm

® Pinning of pages to lock into
memory

Operating System Concepts Essentials — 2" Edition 8.73 Silberschatz, Galvin and Gagne ©2013

«§%’ Operating System Examples

® Windows

m Solaris

Al

Operating System Concepts Essentials — 2" Edition 8.74 Silberschatz, Galvin and Gagne ©2013

y

N

s,

o "'?'-"?'.\-1

m Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page

m Processes are assigned working set minimum and working set
maximum

m Working set minimum is the minimum number of pages the
process is guaranteed to have in memory

m A process may be assigned as many pages up to its working set
maximum

® When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory

m Working set trimming removes pages from processes that have
pages in excess of their working set minimum

- =
- T
o
o
el {

e o
W
S

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 8.75

J

1-.-:;

P Solaris

Maintains a list of free pages to assign faulting processes
LotsfTree — threshold parameter (amount of free memory) to
begin paging

Desfree — threshold parameter to increasing paging
Minfree — threshold parameter to being swapping

Paging is performed by pageout process

Pageout scans pages using modified clock algorithm

Scanrate is the rate at which pages are scanned. This ranges
from slowscan to fastscan

m Pageout is called more frequently depending upon the amount of
free memory available

m Priority paging gives priority to process code pages

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 8.76 Silberschatz, Galvin and Gagne ©2013

— :
$%r Solaris 2 Page Scanner

8192
fastscan

scan rate

100
slowscan

minfree desfree lotsfree
amount of free memory

v

Operating System Concepts Essentials — 2" Edition 8.77 Silberschatz, Galvin and Gagne ©2013

End of Chapter 8

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 8: Virtual Memory
	Chapter 8: Virtual Memory
	Objectives
	Background
	Background (Cont.)
	Background (Cont.)
	Virtual Memory That is Larger Than Physical Memory
	Virtual-address Space
	Shared Library Using Virtual Memory
	Demand Paging
	Basic Concepts
	Valid-Invalid Bit
	Page Table When Some Pages Are Not in Main Memory
	Page Fault
	Steps in Handling a Page Fault
	Aspects of Demand Paging
	Instruction Restart
	Performance of Demand Paging
	Performance of Demand Paging (Cont.)
	Demand Paging Example
	Demand Paging Optimizations
	Copy-on-Write
	Before Process 1 Modifies Page C
	After Process 1 Modifies Page C
	What Happens if There is no Free Frame?
	Page Replacement
	Need For Page Replacement
	Basic Page Replacement
	Page Replacement
	Page and Frame Replacement Algorithms
	Graph of Page Faults Versus The Number of Frames
	First-In-First-Out (FIFO) Algorithm
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Least Recently Used (LRU) Algorithm
	LRU Algorithm (Cont.)
	Use Of A Stack to Record Most Recent Page References
	LRU Approximation Algorithms
	Second-Chance (clock) Page-Replacement Algorithm
	Enhanced Second-Chance Algorithm
	Counting Algorithms
	Page-Buffering Algorithms
	Applications and Page Replacement
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Non-Uniform Memory Access
	Thrashing
	Thrashing (Cont.)
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-Set Model
	Keeping Track of the Working Set
	Page-Fault Frequency
	Working Sets and Page Fault Rates
	Memory-Mapped Files
	Memory-Mapped File Technique for all I/O
	Memory Mapped Files
	Shared Memory via Memory-Mapped I/O
	Shared Memory in Windows API
	Allocating Kernel Memory
	Buddy System
	Buddy System Allocator
	Slab Allocator
	Slab Allocation
	Slab Allocator in Linux
	Slab Allocator in Linux (Cont.)
	Other Considerations -- Prepaging
	Other Issues – Page Size
	Other Issues – TLB Reach
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Operating System Examples
	Windows
	Solaris
	Solaris 2 Page Scanner
	End of Chapter 8

