
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Chapter 15:   
The Linux System 



15.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Chapter 15:  The Linux System 

 Linux History  
 Design Principles 
 Kernel Modules 
 Process Management 
 Scheduling  
 Memory Management  
 File Systems 
 Input and Output  
 Interprocess Communication 
 Network Structure 
 Security 



15.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Objectives 

 To explore the history of the UNIX operating system from 
which Linux is derived and the principles upon which Linux’s 
design is based 

 To examine the Linux process model and illustrate how Linux 
schedules processes and provides interprocess 
communication 

 To look at memory management in Linux 
 To explore how Linux implements file systems and manages 

I/O devices  
 



15.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

History 

 Linux is a modern, free operating system based on UNIX 
standards 

 First developed as a small but self-contained kernel in 1991 
by Linus Torvalds, with the major design goal of UNIX 
compatibility, released as open source 

 Its history has been one of collaboration by many users from 
all around the world, corresponding almost exclusively over 
the Internet 

 It has been designed to run efficiently and reliably on 
common PC hardware, but also runs on a variety of other 
platforms 

 The core Linux operating system kernel is entirely original, 
but it can run much existing free UNIX software, resulting in 
an entire UNIX-compatible operating system free from 
proprietary code 

 Linux system has many, varying Linux distributions 
including the kernel, applications, and management tools 



15.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

The Linux Kernel 

 Version 0.01 (May 1991) had no networking, ran only on 80386-
compatible Intel processors and on PC hardware, had extremely 
limited device-drive support, and supported only the Minix file 
system 

 Linux 1.0 (March 1994) included these new features: 
 Support for UNIX’s standard TCP/IP networking protocols 
 BSD-compatible socket interface for networking programming 
 Device-driver support for running IP over an Ethernet 
 Enhanced file system 
 Support for a range of SCSI controllers for  

high-performance disk access 
 Extra hardware support 

 Version 1.2 (March 1995) was the final PC-only Linux kernel 
  Kernels with odd version numbers are development kernels, 

those with even numbers are production kernels 



15.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Linux 2.0 

 Released in June 1996,  2.0 added two major new capabilities: 
 Support for multiple architectures, including a fully 64-bit native Alpha 

port 
 Support for multiprocessor architectures 

 Other new features included: 
 Improved memory-management code 
 Improved TCP/IP performance 
 Support for internal kernel threads, for handling dependencies between 

loadable modules, and for automatic loading of modules on demand 
 Standardized configuration interface 

 Available for Motorola 68000-series processors, Sun Sparc 
systems, and for PC and PowerMac systems 

 2.4 and 2.6 increased SMP support, added journaling file system, 
preemptive kernel, 64-bit memory support 

 3.0 released in 2011, 20th anniversary of Linux, improved 
virtualization support, new page write-back facility, improved 
memory management, new Completely Fair Scheduler 



15.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

The Linux System 
 Linux uses many tools developed as part of Berkeley’s BSD 

operating system, MIT’s X  Window System, and the Free 
Software Foundation's GNU project 

 The main system libraries were started by the GNU project, with 
improvements provided by the Linux community 

 Linux networking-administration tools were derived from 4.3BSD 
code; recent BSD derivatives such as Free BSD have borrowed 
code from Linux in return 

 The Linux system is maintained by a loose network of developers 
collaborating over the Internet, with a small number of public ftp 
sites acting as de facto standard repositories 

 File System Hierarchy Standard document maintained by the 
Linux community to ensure compatibility across the various 
system components 
 Specifies overall layout of a standard Linux file system, determines 

under which directory names configuration files, libraries, system 
binaries, and run-time data files should be stored  

 



15.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Linux Distributions 

 Standard, precompiled sets of packages, or distributions, 
include the basic Linux system, system installation and 
management utilities, and ready-to-install packages of common 
UNIX tools 

 The first distributions managed these packages by simply 
providing a means of unpacking all the files into the appropriate 
places; modern distributions include advanced package 
management 

 Early distributions included SLS and Slackware  
 Red Hat and Debian are popular distributions from 

commercial and noncommercial sources, respectively, 
others include Canonical and SuSE 

 The RPM Package file format permits compatibility among the 
various Linux distributions 



15.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Linux Licensing 

 The Linux kernel is distributed under the GNU General Public 
License (GPL), the terms of which are set out by the Free 
Software Foundation 
 Not public domain, in that not all rights are waived 

 Anyone using Linux, or creating their own derivative of Linux, 
may not make the derived product proprietary; software 
released under the GPL may not be redistributed as a binary-
only product 
 Can sell distributions, but must offer the source code too 



15.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Design Principles 

 Linux is a multiuser, multitasking system with a full set of 
UNIX-compatible tools 

 Its file system adheres to traditional UNIX semantics, and it 
fully implements the standard UNIX networking model 

 Main design goals are speed, efficiency, and standardization 

 Linux is designed to be compliant with the relevant POSIX 
documents; at least two Linux distributions have achieved 
official POSIX certification 
 Supports Pthreads and a subset of POSIX real-time 

process control 
 The Linux programming interface adheres to the SVR4 UNIX 

semantics, rather than to BSD behavior 
 



15.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Components of a Linux System 



15.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Components of a Linux System 

 Like most UNIX implementations, Linux is composed of three 
main bodies of code; the most important distinction between 
the kernel and all other components. 

 The kernel is responsible for maintaining the important 
abstractions of the operating system 
 Kernel code executes in kernel mode with full access to all 

the physical resources of the computer 
 All kernel code and data structures are kept in the same 

single address space 
 



15.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Components of a Linux System (Cont.) 

 The system libraries define a standard set of functions 
through which applications interact with the kernel, and which 
implement much of the operating-system functionality that 
does not need the full privileges of kernel code 

 The system utilities perform individual specialized 
management tasks 

 User-mode programs rich and varied, including multiple 
shells like the bourne-again (bash) 
 



15.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Kernel Modules 

 Sections of kernel code that can be compiled, loaded, and 
unloaded independent of the rest of the kernel. 

 A kernel module may typically implement a device driver, a file 
system, or a networking protocol 

 The module interface allows third parties to write and distribute, on 
their own terms, device drivers or file systems that could not be 
distributed under the GPL. 

 Kernel modules allow a Linux system to be set up with a standard, 
minimal kernel, without any extra device drivers built in. 

 Four components to Linux module support: 
 module-management system 
 module loader and unloader 
 driver-registration system 
 conflict-resolution mechanism 



15.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Module Management 

 Supports loading modules into memory and letting them talk 
to the rest of the kernel 

 Module loading is split into two separate sections: 
 Managing sections of module code in kernel memory 
 Handling symbols that modules are allowed to reference 

 The module requestor manages loading requested, but 
currently unloaded, modules; it also regularly queries the 
kernel to see whether a dynamically loaded module is still in 
use, and will unload it when it is no longer actively needed 



15.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Driver Registration 

 Allows modules to tell the rest of the kernel that a new driver 
has become available 

 The kernel maintains dynamic tables of all known drivers, and 
provides a set of routines to allow drivers to be added to or 
removed from these tables at any time 

 Registration tables include the following items:   
 Device drivers 
 File systems  
 Network protocols 
 Binary format 



15.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Conflict Resolution 

 A mechanism that allows different device drivers to reserve 
hardware resources and to protect those resources from 
accidental use by another driver. 

 The conflict resolution module aims to: 
 Prevent modules from clashing over access to hardware 

resources 
 Prevent autoprobes from interfering with existing device 

drivers 
 Resolve conflicts with multiple drivers trying to access the 

same hardware: 
1. Kernel maintains list of allocated HW resources 

 

2. Driver reserves resources with kernel database first 
 

3. Reservation request rejected if resource not available 



15.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process Management 

 UNIX process management separates the creation of 
processes and the running of a new program into two distinct 
operations. 
 The fork() system call creates a new process 
 A new program is run after a call to exec() 

 Under UNIX, a process encompasses all the information that 
the operating system must maintain to track the context of a 
single execution of a single program 

 Under Linux, process properties fall into three groups:  the 
process’s identity, environment, and context 



15.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process Identity 

 Process ID (PID) - The unique identifier for the process; used to 
specify processes to the operating system when an application 
makes a system call to signal, modify, or wait for another process 

 Credentials -  Each process must have an associated user ID 
and one or more group IDs that determine the process’s rights to 
access system resources and files 

 Personality -  Not traditionally found on UNIX systems, but under 
Linux each process has an associated personality identifier that 
can slightly modify the semantics of certain system calls 
 Used primarily by emulation libraries to request that system 

calls be compatible with certain specific flavors of UNIX 
 Namespace – Specific view of file system hierarchy 

 Most processes share common namespace and operate on a 
shared file-system hierarchy 

 But each can have unique file-system hierarchy with its own 
root directory and set of mounted file systems 

 



15.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process Environment 

 The process’s environment is inherited from its parent, and is 
composed of two null-terminated vectors: 
 The argument vector lists the command-line arguments 

used to invoke the running program; conventionally starts 
with the name of the program itself. 

 The environment vector is a list of “NAME=VALUE” pairs 
that associates named environment variables with arbitrary 
textual values. 

 Passing environment variables among processes and inheriting 
variables by a process’s children are flexible means of passing 
information to components of the user-mode system software. 

 The environment-variable mechanism provides a customization 
of the operating system that can be set on a per-process basis, 
rather than being configured for the system as a whole. 



15.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process Context 

 The (constantly changing) state of a running program at any 
point in time 

 The scheduling context is the most important part of the 
process context; it is the information that the scheduler needs to 
suspend and restart the process 

 The kernel maintains accounting information about the 
resources currently being consumed by each process, and the 
total resources consumed by the process in its lifetime so far 

 The file table is an array of pointers to kernel file structures 
 When making file I/O system calls, processes refer to files by 

their index into this table, the file descriptor (fd) 



15.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process Context (Cont.) 

 Whereas the file table lists the existing open files, the  
file-system context applies to requests to open new files 
 The current root and default directories to be used for new 

file searches are stored here 
 The signal-handler table defines the routine in the process’s 

address space to be called when specific signals arrive 
 The virtual-memory context of a process describes the full 

contents of the its private address space 



15.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Processes and Threads 

 Linux uses the same internal representation for processes and threads; a 
thread is simply a new process that happens to share the same address 
space as its parent 
 Both are called tasks by Linux 

 A distinction is only made when a new thread is created by the clone() 
system call 
 fork() creates a new task with its own entirely new task context 
 clone() creates a new task with its own identity, but that is allowed 

to share the data structures of its parent 
 Using clone() gives an application fine-grained control over exactly what 

is shared between two threads 



15.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Scheduling 

 The job of allocating CPU time to different tasks within an 
operating system 

 While scheduling is normally thought of as the running and 
interrupting of processes, in Linux, scheduling also includes the 
running of the various kernel tasks 

 Running kernel tasks encompasses both tasks that are 
requested by a running process and tasks that execute internally 
on behalf of a device driver 

 As of 2.5, new scheduling algorithm – preemptive, priority-based, 
known as O(1) 
 Real-time range 
 nice value 
 Had challenges with interactive performance 

 2.6 introduced Completely Fair Scheduler (CFS) 



15.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

CFS 

 Eliminates traditional, common idea of time slice 
 Instead all tasks allocated portion of processor’s time 
 CFS calculates how long a process should run as a function 

of total number of tasks 
 N runnable tasks means each gets 1/N of processor’s time 
 Then weights each task with its nice value 

 Smaller nice value -> higher weight (higher priority) 



15.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

CFS (Cont.) 

 Then each task run with for time proportional to task’s weight 
divided by total weight  of all runnable tasks 

 Configurable variable target latency is desired interval during 
which each task should run at least once 
 Consider simple case of 2 runnable tasks with equal weight 

and target latency of 10ms – each then runs for 5ms 
 If 10 runnable tasks, each runs for 1ms 
Minimum granularity ensures each run has reasonable 

amount of time (which actually violates fairness idea) 
 



15.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Kernel Synchronization 

 A request for kernel-mode execution can occur in two ways: 
 A running program may request an operating system 

service, either explicitly via a system call, or implicitly, for 
example, when a page fault occurs 

 A device driver may deliver a hardware interrupt that 
causes the CPU to start executing a kernel-defined 
handler for that interrupt 

 Kernel synchronization requires a framework that will allow 
the kernel’s critical sections to run without interruption by 
another critical section 



15.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Kernel Synchronization (Cont.) 

 Linux uses two techniques to protect critical sections: 
1. Normal kernel code is nonpreemptible (until 2.6) 

–  when a time interrupt is received while a process is 
    executing a kernel system service routine, the kernel’s  
    need_resched flag is set so that the scheduler will run  
    once the system call has completed and control is 
    about to be returned to user mode 

2. The second technique applies to critical sections that occur in an 
interrupt service routines 

 –  By using the processor’s interrupt control hardware to disable 
interrupts during a critical section, the kernel guarantees that it can 
proceed without the risk of concurrent access of shared data structures 

 Provides spin locks, semaphores, and reader-writer versions of both 
 Behavior modified if on single processor or multi: 

   



15.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Kernel Synchronization (Cont.) 

 To avoid performance penalties, Linux’s kernel uses a 
synchronization architecture that allows long critical sections to 
run without having interrupts disabled for the critical section’s 
entire duration 

 Interrupt service routines are separated into a top half and a 
bottom half 
 The top half is a normal interrupt service routine, and runs 

with recursive interrupts disabled 
 The bottom half is run, with all interrupts enabled, by a 

miniature scheduler that ensures that bottom halves never 
interrupt themselves 

 This architecture is completed by a mechanism for disabling 
selected bottom halves while executing normal, foreground 
kernel code 



15.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Interrupt Protection Levels 

 Each level may be interrupted by code running at a higher 
level, but will never be interrupted by code running at the 
same or a lower level 

 User processes can always be preempted by another 
process when a time-sharing scheduling interrupt occurs 



15.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Symmetric Multiprocessing 

 Linux 2.0 was the first Linux kernel to support SMP hardware; 
separate processes or threads can execute in parallel on 
separate processors 

 Until version 2.2, to preserve the kernel’s nonpreemptible 
synchronization requirements, SMP imposes the restriction, via a 
single kernel spinlock, that only one processor at a time may 
execute kernel-mode code 

 Later releases implement more scalability by splitting single 
spinlock into multiple locks, each protecting a small subset of 
kernel data structures 

 Version 3.0 adds even more fine-grained locking, processor 
affinity, and load-balancing 



15.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Memory Management 

 Linux’s physical memory-management system deals with 
allocating and freeing pages, groups of pages, and small blocks 
of memory 

 It has additional mechanisms for handling virtual memory, 
memory mapped into the address space of running processes 

 Splits memory into four different zones due to hardware 
characteristics 
 Architecture specific, for example on x86: 



15.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Managing Physical Memory 

 The page allocator allocates and frees all physical pages; it 
can allocate ranges of physically-contiguous pages on 
request 

 The allocator uses a buddy-heap algorithm to keep track of 
available physical pages 
 Each allocatable memory region is paired with an 

adjacent partner 
 Whenever two allocated partner regions are both freed 

up they are combined to form a larger region 
 If a small memory request cannot be satisfied by 

allocating an existing small free region, then a larger free 
region will be subdivided into two partners to satisfy the 
request 



15.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Managing Physical Memory (Cont.) 

 Memory allocations in the Linux kernel occur either statically 
(drivers reserve a contiguous area of memory during system 
boot time) or dynamically (via the page allocator) 

 Also uses slab allocator for kernel memory 
 Page cache and virtual memory system also manage 

physical memory 
 Page cache is kernel’s main cache for files and main 

mechanism for I/O to block devices 
 Page cache stores entire pages of file contents for local 

and network file I/O 



15.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Splitting of Memory in a Buddy Heap 



15.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Slab Allocator in Linux 



15.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Virtual Memory 

 The VM system maintains the address space visible to each 
process:  It creates pages of virtual memory on demand, and 
manages the loading of those pages from disk or their swapping 
back out to disk as required. 

 The VM manager maintains two separate views of a process’s 
address space: 
 A logical view describing instructions concerning the layout of 

the address space 
 The address space consists of a set of non-overlapping 

regions, each representing a continuous, page-aligned 
subset of the address space 

 A physical view of each address space which is stored in the 
hardware page tables for the process 



15.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Virtual Memory (Cont.) 

 Virtual memory regions are characterized by: 
 The backing store, which describes from where the pages for 

a region come; regions are usually backed by a file or by 
nothing (demand-zero memory) 

 The region’s reaction to writes (page sharing or copy-on-
write 

 The kernel creates a new virtual address space 
1. When a process runs a new program with the exec() 

system call 
2.  Upon creation of a new process by the fork() system call 



15.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Virtual Memory (Cont.) 

 On executing a new program, the process is given a new, 
completely empty virtual-address space; the program-loading 
routines populate the address space with virtual-memory regions 

 Creating a new process with fork() involves creating a 
complete copy of the existing process’s virtual address space 
 The kernel copies the parent process’s VMA descriptors, 

then creates a new set of page tables for the child 
 The parent’s page tables are copied directly into the child’s, 

with the reference count of each page covered being 
incremented 

 After the fork, the parent and child share the same physical 
pages of memory in their address spaces 



15.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Swapping and Paging 

 The VM paging system relocates pages of memory from 
physical memory out to disk when the memory is needed for 
something else 

 The VM paging system can be divided into two sections: 
 The pageout-policy algorithm decides which pages to 

write out to disk, and when 
 The paging mechanism actually carries out the transfer, 

and pages data back into physical memory as needed 
 Can page out to either swap device or normal files 
 Bitmap used to track used blocks in swap space kept in 

physical memory 
 Allocator uses next-fit algorithm to try to write contiguous 

runs 



15.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Kernel Virtual Memory 

 The Linux kernel reserves a constant, architecture-dependent 
region of the virtual address space of every process for its own 
internal use 

 This kernel virtual-memory area contains two regions: 
 A static area that contains page table references to every 

available physical page of memory in the system, so that 
there is a simple translation from physical to virtual 
addresses when running kernel code 

 The reminder of the reserved section is not reserved for 
any specific purpose; its page-table entries can be modified 
to point to any other areas of memory 



15.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Executing and Loading User Programs 

 Linux maintains a table of functions for loading programs; it gives 
each function the opportunity to try loading the given file when an 
exec system call is made 

 The registration of multiple loader routines allows Linux to support 
both the ELF and a.out binary formats 

 Initially, binary-file pages are mapped into virtual memory 
 Only when a program tries to access a given page will a page 

fault result in that page being loaded into physical memory 

 An ELF-format binary file consists of a header followed by several 
page-aligned sections 
 The ELF loader works by reading the header and mapping the 

sections of the file into separate regions of virtual memory 



15.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Memory Layout for ELF Programs 



15.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Static and Dynamic Linking 

 A program whose necessary library functions are embedded 
directly in the program’s executable binary file is statically 
linked to its libraries 

 The main disadvantage of static linkage is that every program 
generated must contain copies of exactly the same common 
system library functions 

 Dynamic linking is more efficient in terms of both physical 
memory and disk-space usage because it loads the system 
libraries into memory only once 



15.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Static and Dynamic Linking (Cont.) 

 Linux implements dynamic linking in user mode through special 
linker library 
 Every dynamically linked program contains small statically 

linked function called when process starts 
 Maps the link library into memory  
 Link library determines dynamic libraries required by process 

and names of variables and functions needed 
 Maps libraries into middle of virtual memory and resolves 

references to symbols contained in the libraries 
 Shared libraries compiled to be position-independent code 

(PIC) so can be loaded anywhere 



15.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

File Systems 
 To the user, Linux’s file system appears as a hierarchical directory tree 

obeying UNIX semantics 
 Internally, the kernel hides implementation details and manages the 

multiple different file systems via an abstraction layer, that is, the virtual 
file system (VFS) 

 The Linux VFS is designed around object-oriented principles and is 
composed of four components: 
 A set of definitions that define what a file object is allowed to look like 

 The inode object structure represent an individual file 
 The file object represents an open file 
 The superblock object represents an entire file system 
 A dentry object represents an individual directory entry 
 



15.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

File Systems (Cont.) 

 To the user, Linux’s file system appears as a hierarchical 
directory tree obeying UNIX semantics 

 Internally, the kernel hides implementation details and manages 
the multiple different file systems via an abstraction layer, that is, 
the virtual file system (VFS) 

 The Linux VFS is designed around object-oriented principles and  
layer of software to manipulate those objects with a set of 
operations on the objects 
 For example for the file object operations include (from struct 

file_operations in /usr/include/linux/fs.h  
        int open(. . .) — Open a file 
        ssize t read(. . .) — Read from a file 
        ssize t write(. . .) — Write to a file 
        int mmap(. . .) — Memory-map a file 
 



15.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

The Linux ext3 File System 

 ext3 is standard on disk file system for Linux 
 Uses a mechanism similar to that of BSD Fast File 

System (FFS) for locating data blocks belonging to a 
specific file 

 Supersedes older extfs, ext2 file systems 
 Work underway on ext4 adding features like extents 
 Of course, many other file system choices with Linux 

distros 
 

 



15.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

The Linux ext3 File System (Cont.) 

 The main differences between ext2fs and FFS concern their disk 
allocation policies 
 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks being 

subdivided into fragments of 1Kb to store small files or partially filled 
blocks at the end of a file 

 ext3 does not use fragments; it performs its allocations in smaller 
units   
 The default block size on ext3 varies as a function of total size of 

file system with support for 1, 2, 4 and 8 KB blocks  
 ext3 uses cluster allocation policies designed to place logically 

adjacent blocks of a file into physically adjacent blocks on disk, so 
that it can submit an I/O request for several disk blocks as a single 
operation on a block group 

 Maintains bit map of free blocks in a block group, searches for free 
byte to allocate at least 8 blocks at a time 
 

 



15.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Ext2fs Block-Allocation Policies 



15.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Journaling 

 ext3 implements journaling, with file system updates first 
written to a log file in the form of transactions 
 Once in log file, considered committed 
 Over time, log file transactions replayed over file system to 

put changes in place 
 On system crash, some transactions might be in journal but not 

yet placed into file system 
 Must be completed once system recovers 
 No other consistency checking is needed after a crash 

(much faster than older methods) 
 Improves write performance on hard disks by turning random 

I/O into sequential I/O 
 



15.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

The Linux Proc File System 

 The proc file system does not store data, rather, its contents 
are computed on demand according to user file I/O requests 

 proc must implement a directory structure, and the file contents 
within; it must then define a unique and persistent inode 
number for each directory and files it contains 
 It uses this inode number to identify just what operation is 

required when a user tries to read from a particular file 
inode or perform a lookup in a particular directory inode 

 When data is read from one of these files, proc collects the 
appropriate information, formats it into text form and places 
it into the requesting process’s read buffer 



15.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Input and Output 

 The Linux device-oriented file system accesses disk storage 
through two caches: 
 Data is cached in the page cache, which is unified with the 

virtual memory system 
 Metadata is cached in the buffer cache, a separate cache 

indexed by the physical disk block 
 Linux splits all devices into three classes: 

 block devices allow random access to completely 
independent, fixed size blocks of data 

 character devices include most other devices; they don’t 
need to support the functionality of regular files 

 network devices are interfaced via the kernel’s networking 
subsystem 



15.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Block Devices 

 Provide the main interface to all disk devices in a system 
 The block buffer cache serves two main purposes: 

 it acts as a pool of buffers for active I/O 
 it serves as a cache for completed I/O 

 The request manager manages the reading and writing of buffer 
contents to and from a block device driver 

 Kernel 2.6 introduced Completely Fair Queueing (CFQ) 
 Now the default scheduler 
 Fundamentally different from elevator algorithms 
 Maintains set of lists, one for each process by default 
 Uses C-SCAN algorithm, with round robin between all 

outstanding I/O from all processes 
 Four blocks from each process put on at once 



15.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Device-Driver Block Structure 



15.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Character Devices 

 A device driver which does not offer random access to fixed 
blocks of data 

 A character device driver must register a set of functions which 
implement the driver’s various file I/O operations 

 The kernel performs almost no preprocessing of a file read or 
write request to a character device, but simply passes on the 
request to the device 

 The main exception to this rule is the special subset of character 
device drivers which implement terminal devices, for which the 
kernel maintains a standard interface 
 
 



15.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Character Devices (Cont.) 

 Line discipline is an interpreter for the information from the 
terminal device 
 The most common line discipline is tty discipline, which glues 

the terminal’s data stream onto standard input and output 
streams of user’s running processes, allowing processes to 
communicate directly with the user’s terminal 

 Several processes may be running simultaneously, tty line 
discipline responsible for attaching and detaching terminal’s 
input and output from various processes connected to it as 
processes are suspended or awakened by user 

 Other line disciplines also are implemented have nothing to 
do with I/O to user process – i.e. PPP and SLIP networking 
protocols 

 
 



15.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Interprocess Communication 

 Like UNIX, Linux informs processes that an event has occurred 
via signals 

 There is a limited number of signals, and they cannot carry 
information:  Only the fact that a signal occurred is available to a 
process 

 The Linux kernel does not use signals to communicate with 
processes with are running in kernel mode, rather, 
communication within the kernel is accomplished via scheduling 
states and wait_queue structures 

 Also implements System V Unix semaphores 
 Process can wait for a signal or a semaphore 
 Semaphores scale better 
 Operations on multiple semaphores can be atomic 



15.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Passing Data Between Processes 

 The pipe mechanism allows a child process to inherit a 
communication channel to its parent, data written to one end 
of the pipe can be read a the other 

 Shared memory offers an extremely fast way of 
communicating; any data written by one process to a shared 
memory region can be read immediately by any other 
process that has mapped that region into its address space 

 To obtain synchronization, however, shared memory must 
be used in conjunction with another Interprocess-
communication mechanism 



15.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Network Structure 
 Networking is a key area of functionality for Linux 

 It supports the standard Internet protocols for UNIX to UNIX 
communications 

 It also implements protocols native to non-UNIX operating systems, in 
particular, protocols used on PC networks, such as Appletalk and IPX 

 Internally, networking in the Linux kernel is implemented by three 
layers of software: 
 The socket interface 
 Protocol drivers 
 Network device drivers 

 Most important set of protocols in the Linux networking system is the 
internet protocol suite 
 It implements routing between different hosts anywhere on the network 
 On top of the routing protocol are built the UDP, TCP and ICMP protocols 

 Packets also pass to firewall management for filtering based on 
firewall chains of rules 

 



15.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Security 

 The pluggable authentication modules (PAM) system is 
available under Linux 

 PAM is based on a shared library that can be used by any 
system component that needs to authenticate users 

 Access control under UNIX systems, including Linux, is 
performed through the use of unique numeric identifiers (uid 
and gid) 

 Access control is performed by assigning objects a protections 
mask, which specifies which access modes—read, write, or 
execute—are to be granted to processes with owner, group, or 
world access 



15.62 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Security (Cont.) 

 Linux augments the standard UNIX setuid mechanism in two 
ways: 
 It implements the POSIX specification’s saved user-id 

mechanism, which allows a process to repeatedly drop and 
reacquire its effective uid 

 It has added a process characteristic that grants just a 
subset of the rights of the effective uid 

 Linux provides another mechanism that allows a client to 
selectively pass access to a single file to some server process 
without granting it any other privileges 



Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

End of Chapter 15 


	Chapter 15:  �The Linux System
	Chapter 15:  The Linux System
	Objectives
	History
	The Linux Kernel
	Linux 2.0
	The Linux System
	Linux Distributions
	Linux Licensing
	Design Principles
	Components of a Linux System
	Components of a Linux System
	Components of a Linux System (Cont.)
	Kernel Modules
	Module Management
	Driver Registration
	Conflict Resolution
	Process Management
	Process Identity
	Process Environment
	Process Context
	Process Context (Cont.)
	Processes and Threads
	Scheduling
	CFS
	CFS (Cont.)
	Kernel Synchronization
	Kernel Synchronization (Cont.)
	Kernel Synchronization (Cont.)
	Interrupt Protection Levels
	Symmetric Multiprocessing
	Memory Management
	Managing Physical Memory
	Managing Physical Memory (Cont.)
	Splitting of Memory in a Buddy Heap
	Slab Allocator in Linux
	Virtual Memory
	Virtual Memory (Cont.)
	Virtual Memory (Cont.)
	Swapping and Paging
	Kernel Virtual Memory
	Executing and Loading User Programs
	Memory Layout for ELF Programs
	Static and Dynamic Linking
	Static and Dynamic Linking (Cont.)
	File Systems
	File Systems (Cont.)
	The Linux ext3 File System
	The Linux ext3 File System (Cont.)
	Ext2fs Block-Allocation Policies
	Journaling
	The Linux Proc File System
	Input and Output
	Block Devices
	Device-Driver Block Structure
	Character Devices
	Character Devices (Cont.)
	Interprocess Communication
	Passing Data Between Processes
	Network Structure
	Security
	Security (Cont.)
	End of Chapter 15

