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Objectives 

 To introduce the notion of a process -- a program in 
execution, which forms the basis of all computation 

 To describe the various features of processes, including 
scheduling, creation and termination, and communication 

 To explore interprocess communication using shared memory 
and message passing 

 To describe communication in client-server systems 
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Process Concept 

 An operating system executes a variety of programs: 
 Batch system – jobs 
 Time-shared systems – user programs or tasks 

 Textbook uses the terms job and process almost interchangeably 
 Process – a program in execution; process execution must 

progress in sequential fashion 
 Multiple parts 

 The program code, also called text section 
 Current activity including program counter, processor 

registers 
 Stack containing temporary data 

 Function parameters, return addresses, local variables 
 Data section containing global variables 
 Heap containing memory dynamically allocated during run time 
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Process Concept (Cont.) 

 Program is passive entity stored on disk (executable file), 
process is active  
 Program becomes process when executable file loaded into 

memory 
 Execution of program started via GUI mouse clicks, command 

line entry of its name, etc 
 One program can be several processes 

 Consider multiple users executing the same program 
 

 



3.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Process in Memory 
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Process State 

 As a process executes, it changes state 
 new:  The process is being created 
 running:  Instructions are being executed 
 waiting:  The process is waiting for some event to occur 
 ready:  The process is waiting to be assigned to a processor 
 terminated:  The process has finished execution 
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Diagram of Process State 
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Process Control Block (PCB) 

Information associated with each process  
(also called task control block) 
 Process state – running, waiting, etc 
 Program counter – location of 

instruction to next execute 
 CPU registers – contents of all process-

centric registers 
 CPU scheduling information- priorities, 

scheduling queue pointers 
 Memory-management information – 

memory allocated to the process 
 Accounting information – CPU used, 

clock time elapsed since start, time 
limits 

 I/O status information – I/O devices 
allocated to process, list of open files 
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CPU Switch From Process to Process 
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Threads 

 So far, process has a single thread of execution 
 Consider having multiple program counters per process 

 Multiple locations can execute at once 
Multiple threads of control -> threads 

 Must then have storage for thread details, multiple program 
counters in PCB 

 See next chapter 
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Process Representation in Linux 

Represented by the C structure task_struct 
 

pid t_pid; /* process identifier */  
long state; /* state of the process */  
unsigned int time_slice /* scheduling information */  
struct task_struct *parent; /* this process’s parent */  
struct list_head children; /* this process’s children */  
struct files_struct *files; /* list of open files */  
struct mm_struct *mm; /* address space of this process */ 
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Process Scheduling 

 Maximize CPU use, quickly switch processes onto CPU for 
time sharing 

 Process scheduler selects among available processes for 
next execution on CPU 

 Maintains scheduling queues of processes 
 Job queue – set of all processes in the system 
 Ready queue – set of all processes residing in main 

memory, ready and waiting to execute 
 Device queues – set of processes waiting for an I/O device 
 Processes migrate among the various queues 
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Ready Queue And Various I/O Device Queues 
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Representation of Process Scheduling 

 Queueing diagram represents queues, resources, flows 
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Schedulers 

 Short-term scheduler  (or CPU scheduler) – selects which process should 
be executed next and allocates CPU 
 Sometimes the only scheduler in a system 
 Short-term scheduler is invoked frequently (milliseconds) ⇒ (must be 

fast) 
 Long-term scheduler  (or job scheduler) – selects which processes should 

be brought into the ready queue 
 Long-term scheduler is invoked  infrequently (seconds, minutes) ⇒ 

(may be slow) 
 The long-term scheduler controls the degree of multiprogramming 

 Processes can be described as either: 
 I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts 
 CPU-bound process – spends more time doing computations; few very 

long CPU bursts 
 Long-term scheduler strives for good process mix 
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Addition of Medium Term Scheduling 

 Medium-term scheduler  can be added if degree of multiple 
programming needs to decrease 
 Remove process from memory, store on disk, bring back in 

from disk to continue execution: swapping 
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Multitasking in Mobile Systems 

 Some mobile systems (e.g., early version of iOS)  allow only one 
process to run, others suspended 

 Due to screen real estate, user interface limits iOS provides for a  
 Single foreground process- controlled via user interface 
 Multiple background processes– in memory, running, but not 

on the display, and with limits 
 Limits include single, short task, receiving notification of events, 

specific long-running tasks like audio playback 
 Android runs foreground and background, with fewer limits 

 Background process uses a service to perform tasks 
 Service can keep running even if background process is 

suspended 
 Service has no user interface, small memory use 
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Context Switch 

 When CPU switches to another process, the system must save 
the state of the old process and load the saved state for the 
new process via a context switch 

 Context of a process represented in the PCB 
 Context-switch time is overhead; the system does no useful 

work while switching 
 The more complex the OS and the PCB  the longer the 

context switch 
 Time dependent on hardware support 

 Some hardware provides multiple sets of registers per CPU 
 multiple contexts loaded at once 
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Operations on Processes 

 System must provide mechanisms for: 
  process creation, 
  process termination,  
  and so on as detailed next 
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Process Creation 

 Parent process create children processes, which, in turn 
create other processes, forming a tree of processes 

 Generally, process identified and managed via a process 
identifier (pid) 

 Resource sharing options 
 Parent and children share all resources 
 Children share subset of parent’s resources 
 Parent and child share no resources 

 Execution options 
 Parent and children execute concurrently 
 Parent waits until children terminate 
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A Tree of Processes in Linux 
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Process Creation (Cont.) 

 Address space 
 Child duplicate of parent 
 Child has a program loaded into it 

 UNIX examples 
 fork() system call creates new process 
 exec() system call used after a fork() to replace the 

process’ memory space with a new program 
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C Program Forking Separate Process 
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Creating a Separate Process via Windows API 
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Process Termination 

 Process executes last statement and then asks the operating 
system to delete it using the exit() system call. 
 Returns  status data from child to parent (via wait()) 

 Process’ resources are deallocated by operating system 
 Parent may terminate the execution of children processes  using 

the abort() system call.  Some reasons for doing so: 

 Child has exceeded allocated resources 
 Task assigned to child is no longer required 
 The parent is exiting and the operating systems does not 

allow  a child to continue if its parent terminates 
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Process Termination 
 

 Some operating systems do not allow child to exists if its parent 
has terminated.  If a process terminates, then all its children must 
also be terminated. 
 cascading termination.  All children, grandchildren, etc.  are  

terminated. 
 The termination is initiated by the operating system. 

 The parent process may wait for termination of a child process by 
using the wait()system call. The call returns status information 
and the pid of the terminated process 

      pid = wait(&status);  

 If no parent waiting (did not invoke wait()) process is a zombie 
 If parent terminated without invoking wait , process is an orphan 
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Multiprocess Architecture – Chrome Browser 

 Many web browsers ran as single process (some still do) 
 If one web site causes trouble, entire browser can hang or crash 

 Google Chrome Browser is multiprocess with 3 different types of 
processes:  
 Browser process manages user interface, disk and network I/O 
 Renderer process renders web pages, deals with HTML, 

Javascript. A new renderer created for each website opened 
 Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits 
 Plug-in process for each type of plug-in 
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Interprocess Communication 

 Processes within a system may be independent or cooperating 
 Cooperating process can affect or be affected by other processes, 

including sharing data 
 Reasons for cooperating processes: 

 Information sharing 
 Computation speedup 
 Modularity 
 Convenience  

 Cooperating processes need interprocess communication (IPC) 
 Two models of IPC 

 Shared memory 
 Message passing 
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Communications Models  

(a) Message passing.  (b) shared memory.   
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Cooperating Processes 

 Independent process cannot affect or be affected by the execution 
of another process 

 Cooperating process can affect or be affected by the execution of 
another process 

 Advantages of process cooperation 
 Information sharing  
 Computation speed-up 
 Modularity 
 Convenience 
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Producer-Consumer Problem 

 Paradigm for cooperating processes, producer process 
produces information that is consumed by a consumer 
process 
 unbounded-buffer places no practical limit on the size 

of the buffer 
 bounded-buffer assumes that there is a fixed buffer 

size 
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Bounded-Buffer – Shared-Memory Solution 

 Shared data 
#define BUFFER_SIZE 10 

typedef struct { 

 . . . 

} item; 

 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 

 
 Solution is correct, but can only use BUFFER_SIZE-1 elements 
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Bounded-Buffer – Producer 
 
item next_produced;  
while (true) {  
 /* produce an item in next produced */  
 while (((in + 1) % BUFFER_SIZE) == out)  
  ; /* do nothing */  
 buffer[in] = next_produced;  
 in = (in + 1) % BUFFER_SIZE;  
}  
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Bounded Buffer – Consumer 

item next_consumed;  

while (true) { 
 while (in == out)  

  ; /* do nothing */ 
 next_consumed = buffer[out];  

 out = (out + 1) % BUFFER_SIZE; 
 

 /* consume the item in next consumed */  

}  
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Interprocess Communication –  Shared Memory 

 An area of memory shared among the processes that wish 
to communicate 

 The communication is under the control of the users 
processes not the operating system. 

 Major issues is to provide mechanism that will allow the 
user processes to synchronize their actions when they 
access shared memory.  

 Synchronization is discussed in great details in Chapter 5. 
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Interprocess Communication – Message Passing 

 Mechanism for processes to communicate and to synchronize 
their actions 
 

 Message system – processes communicate with each other 
without resorting to shared variables 
 

 IPC facility provides two operations: 
 send(message) 
 receive(message) 
 

 The message size is either fixed or variable 
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Message Passing (Cont.) 

 

 If processes P and Q wish to communicate, they need to: 
 Establish a communication link between them 
 Exchange messages via send/receive 

 Implementation issues: 
 How are links established? 
 Can a link be associated with more than two processes? 
 How many links can there be between every pair of 

communicating processes? 
 What is the capacity of a link? 
 Is the size of a message that the link can accommodate fixed or 

variable? 
 Is a link unidirectional or bi-directional? 
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Message Passing (Cont.) 
 

 

 Implementation of communication link 
 Physical: 

 Shared memory 
 Hardware bus 
 Network 

 Logical: 
  Direct or indirect 
  Synchronous or asynchronous 
  Automatic or explicit buffering 
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Direct Communication 

 Processes must name each other explicitly: 
 send (P, message) – send a message to process P 
 receive(Q, message) – receive a message from process Q 

 Properties of communication link 
 Links are established automatically 
 A link is associated with exactly one pair of communicating 

processes 
 Between each pair there exists exactly one link 
 The link may be unidirectional, but is usually bi-directional 
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Indirect Communication 

 Messages are directed and received from mailboxes (also referred 
to as ports) 
 Each mailbox has a unique id 
 Processes can communicate only if they share a mailbox 

 Properties of communication link 
 Link established only if processes share a common mailbox 
 A link may be associated with many processes 
 Each pair of processes may share several communication links 
 Link may be unidirectional or bi-directional 



3.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Indirect Communication 

 Operations 
 create a new mailbox (port) 
 send and receive messages through mailbox 
 destroy a mailbox 

 Primitives are defined as: 
 send(A, message) – send a message to mailbox A 
 receive(A, message) – receive a message from mailbox A 
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Indirect Communication 

 Mailbox sharing 
 P1, P2, and P3 share mailbox A 
 P1, sends; P2 and P3 receive 
 Who gets the message? 

 Solutions 
 Allow a link to be associated with at most two processes 
 Allow only one process at a time to execute a receive 

operation 
 Allow the system to select arbitrarily the receiver.  

Sender is notified who the receiver was. 
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Synchronization 

 Message passing may be either blocking or non-blocking 
 Blocking is considered synchronous 

 Blocking send -- the sender is blocked until the message is 
received 

 Blocking receive -- the receiver is  blocked until a message 
is available 

 Non-blocking is considered asynchronous 
 Non-blocking send -- the sender sends the message and 

continue 
 Non-blocking receive -- the receiver receives: 

  A valid message,  or  
  Null message 

 Different combinations possible 
 If both send and receive are blocking, we have a rendezvous 
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Synchronization (Cont.) 

 Producer-consumer becomes trivial 
 

       message next_produced;  

       while (true) { 
           /* produce an item in next produced */  

       send(next_produced);  

       }  

message next_consumed; 
while (true) { 
   receive(next_consumed); 
    
   /* consume the item in next consumed */ 
} 
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Buffering 

 Queue of messages attached to the link. 
 implemented in one of three ways 

1. Zero capacity – no messages are queued on a link. 
Sender must wait for receiver (rendezvous) 

2. Bounded capacity – finite length of n messages 
Sender must wait if link full 

3. Unbounded capacity – infinite length  
Sender never waits 
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Examples of IPC Systems - POSIX 

 POSIX Shared Memory 
 Process first creates shared memory segment 

shm_fd = shm_open(name, O CREAT | O RDWR, 0666); 

 Also used to open an existing segment to share it  
 Set the size of the object 

 ftruncate(shm fd, 4096);  

 Now the process could write to the shared memory 
 sprintf(shared memory, "Writing to shared 

memory"); 
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IPC POSIX Producer 
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IPC POSIX Consumer 
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Examples of IPC Systems - Mach 

 Mach communication is message based 
 Even system calls are messages 
 Each task gets two mailboxes at creation- Kernel and Notify 
 Only three system calls needed for message transfer 
 msg_send(), msg_receive(), msg_rpc() 

 Mailboxes needed for commuication, created via 
 port_allocate() 

 Send and receive are flexible, for example four options if mailbox full: 
Wait indefinitely 
Wait at most n milliseconds 
 Return immediately 
 Temporarily cache a message 
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Examples of IPC Systems – Windows 

 Message-passing centric via advanced local procedure call 
(LPC) facility 
 Only works between processes on the same system 
 Uses ports (like mailboxes) to establish and maintain 

communication channels 
 Communication works as follows: 

 The client opens a handle to the subsystem’s 
connection port object. 

 The client sends a connection request. 
 The server creates two private communication ports 

and returns the handle to one of them to the client. 
 The client and server use the corresponding port handle 

to send messages or callbacks and to listen for replies. 
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Local Procedure Calls in Windows 
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Communications in Client-Server Systems 

 Sockets 
 Remote Procedure Calls 
 Pipes 
 Remote Method Invocation (Java) 
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Sockets 

 A socket is defined as an endpoint for communication 
 

 Concatenation of IP address and port – a number included at 
start of message packet to differentiate network services on a 
host 
 

 The socket 161.25.19.8:1625 refers to port 1625 on host 
161.25.19.8 
 

 Communication consists between a pair of sockets 
 

 All ports below 1024 are well known, used for standard 
services 
 

 Special IP address 127.0.0.1 (loopback) to refer to system on 
which process is running 
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Socket Communication 
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Sockets in Java 

 Three types of sockets 
 Connection-oriented 

(TCP) 
 Connectionless (UDP) 
 MulticastSocket 

class– data can be sent 
to multiple recipients 

 
 Consider this “Date” server: 
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Remote Procedure Calls 

 Remote procedure call (RPC) abstracts procedure calls 
between processes on networked systems 
 Again uses ports for service differentiation 

 Stubs – client-side proxy for the actual procedure on the 
server 

 The client-side stub locates the server and marshalls the 
parameters 

 The server-side stub receives this message, unpacks the 
marshalled parameters, and performs the procedure on the 
server 

 On Windows, stub code compile from specification written in 
Microsoft Interface Definition Language (MIDL) 
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Remote Procedure Calls (Cont.) 
 

 Data representation handled via External Data 
Representation (XDL) format to account for different 
architectures 
 Big-endian and little-endian 

 Remote communication has more failure scenarios than local 
 Messages can be delivered exactly once rather than at 

most once 
 OS typically provides a rendezvous (or matchmaker) service 

to connect client and server 
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Execution of RPC 
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Pipes 

 Acts as a conduit allowing two processes to communicate 
 Issues: 

 Is communication unidirectional or bidirectional? 
 In the case of two-way communication, is it half or full-

duplex? 
 Must there exist a relationship (i.e., parent-child) between 

the communicating processes? 
 Can the pipes be used over a network? 

 Ordinary pipes – cannot be accessed  from outside the process 
that created it. Typically, a parent process creates a pipe and 
uses it to communicate with a child process that it created.  

 Named pipes – can be accessed without a parent-child 
relationship. 
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Ordinary Pipes 

 Ordinary Pipes allow communication in standard producer-consumer 
style 

 Producer writes to one end (the write-end of the pipe) 
 Consumer reads from the other end (the read-end of the pipe) 
 Ordinary pipes are therefore unidirectional 
 Require parent-child relationship between communicating processes 
 

 
 
 

 
 

 Windows calls these anonymous pipes 
 See Unix and Windows code samples in textbook 
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Named Pipes 

 Named Pipes are more powerful than ordinary pipes 
 Communication is bidirectional 
 No parent-child relationship is necessary between the 

communicating processes 
 Several processes can use the named pipe for communication 
 Provided on both UNIX and Windows systems 
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End of Chapter 3 
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