
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

 To describe the various features of processes, including
scheduling, creation and termination, and communication

 To explore interprocess communication using shared memory
and message passing

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must

progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),
process is active
 Program becomes process when executable file loaded into

memory
 Execution of program started via GUI mouse clicks, command

line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of

instruction to next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities,

scheduling queue pointers
 Memory-management information –

memory allocated to the process
 Accounting information – CPU used,

clock time elapsed since start, time
limits

 I/O status information – I/O devices
allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
Multiple threads of control -> threads

 Must then have storage for thread details, multiple program
counters in PCB

 See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main

memory, ready and waiting to execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds) ⇒ (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) ⇒

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few very

long CPU bursts
 Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease
 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not

on the display, and with limits
 Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback
 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks
 Service can keep running even if background process is

suspended
 Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful

work while switching
 The more complex the OS and the PCB  the longer the

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU
 multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operations on Processes

 System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Tree of Processes in Linux

3.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process
 exec() system call used after a fork() to replace the

process’ memory space with a new program

3.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

C Program Forking Separate Process

3.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Creating a Separate Process via Windows API

3.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.
 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system
 Parent may terminate the execution of children processes using

the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Termination

 Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

 pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie
 If parent terminated without invoking wait , process is an orphan

3.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 different types of
processes:
 Browser process manages user interface, disk and network I/O
 Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
 Plug-in process for each type of plug-in

3.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes,

including sharing data
 Reasons for cooperating processes:

 Information sharing
 Computation speedup
 Modularity
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Communications Models

(a) Message passing. (b) shared memory.

3.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution
of another process

 Cooperating process can affect or be affected by the execution of
another process

 Advantages of process cooperation
 Information sharing
 Computation speed-up
 Modularity
 Convenience

3.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process
 unbounded-buffer places no practical limit on the size

of the buffer
 bounded-buffer assumes that there is a fixed buffer

size

3.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded-Buffer – Producer

item next_produced;
while (true) {
 /* produce an item in next produced */
 while (((in + 1) % BUFFER_SIZE) == out)
 ; /* do nothing */
 buffer[in] = next_produced;
 in = (in + 1) % BUFFER_SIZE;
}

3.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next consumed */

}

3.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish
to communicate

 The communication is under the control of the users
processes not the operating system.

 Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 The message size is either fixed or variable

3.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of

communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or

variable?
 Is a link unidirectional or bi-directional?

3.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

3.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred
to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
 send(A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

3.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is
received

 Blocking receive -- the receiver is blocked until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue
 Non-blocking receive -- the receiver receives:

 A valid message, or
 Null message

 Different combinations possible
 If both send and receive are blocking, we have a rendezvous

3.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Synchronization (Cont.)

 Producer-consumer becomes trivial

 message next_produced;

 while (true) {
 /* produce an item in next produced */

 send(next_produced);

 }

message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

3.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Buffering

 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory
 Process first creates shared memory segment

shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

 Also used to open an existing segment to share it
 Set the size of the object

 ftruncate(shm fd, 4096);

 Now the process could write to the shared memory
 sprintf(shared memory, "Writing to shared

memory");

3.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

IPC POSIX Producer

3.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

IPC POSIX Consumer

3.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Examples of IPC Systems - Mach

 Mach communication is message based
 Even system calls are messages
 Each task gets two mailboxes at creation- Kernel and Notify
 Only three system calls needed for message transfer
 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via
 port_allocate()

 Send and receive are flexible, for example four options if mailbox full:
Wait indefinitely
Wait at most n milliseconds
 Return immediately
 Temporarily cache a message

3.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Examples of IPC Systems – Windows

 Message-passing centric via advanced local procedure call
(LPC) facility
 Only works between processes on the same system
 Uses ports (like mailboxes) to establish and maintain

communication channels
 Communication works as follows:

 The client opens a handle to the subsystem’s
connection port object.

 The client sends a connection request.
 The server creates two private communication ports

and returns the handle to one of them to the client.
 The client and server use the corresponding port handle

to send messages or callbacks and to listen for replies.

3.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Local Procedure Calls in Windows

3.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Pipes
 Remote Method Invocation (Java)

3.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard
services

 Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Socket Communication

3.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Sockets in Java

 Three types of sockets
 Connection-oriented

(TCP)
 Connectionless (UDP)
 MulticastSocket

class– data can be sent
to multiple recipients

 Consider this “Date” server:

3.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems
 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the
server

 The client-side stub locates the server and marshalls the
parameters

 The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

 On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

3.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Remote Procedure Calls (Cont.)

 Data representation handled via External Data
Representation (XDL) format to account for different
architectures
 Big-endian and little-endian

 Remote communication has more failure scenarios than local
 Messages can be delivered exactly once rather than at

most once
 OS typically provides a rendezvous (or matchmaker) service

to connect client and server

3.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Execution of RPC

3.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pipes

 Acts as a conduit allowing two processes to communicate
 Issues:

 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-

duplex?
 Must there exist a relationship (i.e., parent-child) between

the communicating processes?
 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.

 Named pipes – can be accessed without a parent-child
relationship.

3.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer
style

 Producer writes to one end (the write-end of the pipe)
 Consumer reads from the other end (the read-end of the pipe)
 Ordinary pipes are therefore unidirectional
 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes
 See Unix and Windows code samples in textbook

3.62 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Named Pipes

 Named Pipes are more powerful than ordinary pipes
 Communication is bidirectional
 No parent-child relationship is necessary between the

communicating processes
 Several processes can use the named pipe for communication
 Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 3

	Chapter 3: Processes
	Chapter 3: Processes
	Objectives
	Process Concept
	Process Concept (Cont.)
	Process in Memory
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	CPU Switch From Process to Process
	Threads
	Process Representation in Linux
	Process Scheduling
	Ready Queue And Various I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Addition of Medium Term Scheduling
	Multitasking in Mobile Systems
	Context Switch
	Operations on Processes
	Process Creation
	A Tree of Processes in Linux
	Process Creation (Cont.)
	C Program Forking Separate Process
	Creating a Separate Process via Windows API
	Process Termination
	Process Termination
	Multiprocess Architecture – Chrome Browser
	Interprocess Communication
	Communications Models
	Cooperating Processes
	Producer-Consumer Problem
	Bounded-Buffer – Shared-Memory Solution
	Bounded-Buffer – Producer
	Bounded Buffer – Consumer
	Interprocess Communication – Shared Memory
	Interprocess Communication – Message Passing
	Message Passing (Cont.)
	Message Passing (Cont.)
	Direct Communication
	Indirect Communication
	Indirect Communication
	Indirect Communication
	Synchronization
	Synchronization (Cont.)
	Buffering
	Examples of IPC Systems - POSIX
	IPC POSIX Producer
	IPC POSIX Consumer
	Examples of IPC Systems - Mach
	Examples of IPC Systems – Windows
	Local Procedure Calls in Windows
	Communications in Client-Server Systems
	Sockets
	Socket Communication
	Sockets in Java
	Remote Procedure Calls
	Remote Procedure Calls (Cont.)
	Execution of RPC
	Pipes
	Ordinary Pipes
	Named Pipes
	End of Chapter 3

