
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 10:
File-System Interface

10.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 11: File-System Interface

 File Concept
 Access Methods
 Disk and Directory Structure
 File-System Mounting
 File Sharing
 Protection

10.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To explain the function of file systems
 To describe the interfaces to file systems
 To discuss file-system design tradeoffs, including access

methods, file sharing, file locking, and directory structures
 To explore file-system protection

10.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Concept

 Contiguous logical address space
 Types:

 Data
 numeric
 character
 binary

 Program
 Contents defined by file’s creator

 Many types
 Consider text file, source file, executable file

10.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Attributes

 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security,

and usage monitoring
 Information about files are kept in the directory structure, which is

maintained on the disk
 Many variations, including extended file attributes such as file

checksum
 Information kept in the directory structure

10.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File info Window on Mac OS X

10.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Operations

 File is an abstract data type
 Create
 Write – at write pointer location
 Read – at read pointer location
 Reposition within file - seek
 Delete
 Truncate
 Open(Fi) – search the directory structure on disk for entry Fi,

and move the content of entry to memory
 Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

10.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Open Files

 Several pieces of data are needed to manage open files:
 Open-file table: tracks open files
 File pointer: pointer to last read/write location, per

process that has the file open
 File-open count: counter of number of times a file is

open – to allow removal of data from open-file table when
last processes closes it

 Disk location of the file: cache of data access information
 Access rights: per-process access mode information

10.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Open File Locking

 Provided by some operating systems and file systems
 Similar to reader-writer locks
 Shared lock similar to reader lock – several processes can

acquire concurrently
 Exclusive lock similar to writer lock

 Mediates access to a file
 Mandatory or advisory:

 Mandatory – access is denied depending on locks held and
requested

 Advisory – processes can find status of locks and decide
what to do

10.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Locking Example – Java API

import java.io.*;
import java.nio.channels.*;
public class LockingExample {
 public static final boolean EXCLUSIVE = false;
 public static final boolean SHARED = true;
 public static void main(String arsg[]) throws IOException {
 FileLock sharedLock = null;
 FileLock exclusiveLock = null;
 try {
 RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");
 // get the channel for the file
 FileChannel ch = raf.getChannel();
 // this locks the first half of the file - exclusive
 exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
 /** Now modify the data . . . */
 // release the lock
 exclusiveLock.release();

10.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Locking Example – Java API (Cont.)

 // this locks the second half of the file - shared
 sharedLock = ch.lock(raf.length()/2+1, raf.length(),

 SHARED);
 /** Now read the data . . . */
 // release the lock
 sharedLock.release();
 } catch (java.io.IOException ioe) {
 System.err.println(ioe);
 }finally {
 if (exclusiveLock != null)
 exclusiveLock.release();
 if (sharedLock != null)
 sharedLock.release();
 }
 }
}

10.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Types – Name, Extension

10.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Structure

 None - sequence of words, bytes
 Simple record structure

 Lines
 Fixed length
 Variable length

 Complex Structures
 Formatted document
 Relocatable load file

 Can simulate last two with first method by inserting
appropriate control characters

 Who decides:
 Operating system
 Program

10.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Sequential-access File

10.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Methods

 Sequential Access
 read next
 write next
 reset
 no read after last write
 (rewrite)
 Direct Access – file is fixed length logical records
 read n
 write n
 position to n
 read next
 write next
 rewrite n

 n = relative block number

 Relative block numbers allow OS to decide where file should be placed

 See allocation problem in Ch 12

10.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Simulation of Sequential Access on Direct-access File

10.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Other Access Methods

 Can be built on top of base methods
 General involve creation of an index for the file
 Keep index in memory for fast determination of location of

data to be operated on (consider UPC code plus record of
data about that item)

 If too large, index (in memory) of the index (on disk)
 IBM indexed sequential-access method (ISAM)

 Small master index, points to disk blocks of secondary
index

 File kept sorted on a defined key
 All done by the OS

 VMS operating system provides index and relative files as
another example (see next slide)

10.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of Index and Relative Files

10.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Directory Structure

 A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

10.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Disk Structure

 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or

formatted with a file system
 Partitions also known as minidisks, slices
 Entity containing file system known as a volume
 Each volume containing file system also tracks that file

system’s info in device directory or volume table of contents
 As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same
operating system or computer

10.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Typical File-system Organization

10.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Types of File Systems

 We mostly talk of general-purpose file systems
 But systems frequently have may file systems, some general- and

some special- purpose
 Consider Solaris has

 tmpfs – memory-based volatile FS for fast, temporary I/O
 objfs – interface into kernel memory to get kernel symbols for

debugging
 ctfs – contract file system for managing daemons
 lofs – loopback file system allows one FS to be accessed in

place of another
 procfs – kernel interface to process structures
 ufs, zfs – general purpose file systems

10.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

10.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Directory Organization

 Efficiency – locating a file quickly
 Naming – convenient to users

 Two users can have same name for different files
 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all
Java programs, all games, …)

The directory is organized logically to obtain

10.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Single-Level Directory
 A single directory for all users

 Naming problem
 Grouping problem

10.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Two-Level Directory

 Separate directory for each user

 Path name
 Can have the same file name for different user
 Efficient searching
 No grouping capability

10.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Tree-Structured Directories

10.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Tree-Structured Directories (Cont.)

 Efficient searching

 Grouping Capability

 Current directory (working directory)
 cd /spell/mail/prog

 type list

10.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Tree-Structured Directories (Cont)

 Absolute or relative path name
 Creating a new file is done in current directory
 Delete a file
 rm <file-name>

 Creating a new subdirectory is done in current directory
 mkdir <dir-name>

 Example: if in current directory /mail
 mkdir count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

10.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Acyclic-Graph Directories

 Have shared subdirectories and files

10.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Acyclic-Graph Directories (Cont.)

 Two different names (aliasing)
 If dict deletes list ⇒ dangling pointer
 Solutions:

 Backpointers, so we can delete all pointers
Variable size records a problem

 Backpointers using a daisy chain organization
 Entry-hold-count solution

 New directory entry type
 Link – another name (pointer) to an existing file
 Resolve the link – follow pointer to locate the file

10.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

General Graph Directory

10.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

General Graph Directory (Cont.)

 How do we guarantee no cycles?
 Allow only links to file not subdirectories
 Garbage collection
 Every time a new link is added use a cycle detection

algorithm to determine whether it is OK

10.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File System Mounting

 A file system must be mounted before it can be accessed
 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a

mount point

10.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Mount Point

10.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Sharing

 Sharing of files on multi-user systems is desirable
 Sharing may be done through a protection scheme
 On distributed systems, files may be shared across a network
 Network File System (NFS) is a common distributed file-sharing

method
 If multi-user system

 User IDs identify users, allowing permissions and
protections to be per-user
Group IDs allow users to be in groups, permitting group
access rights

 Owner of a file / directory
 Group of a file / directory

10.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems
 Manually via programs like FTP
 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from
servers
 Server can serve multiple clients
 Client and user-on-client identification is insecure or complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol
 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such
as LDAP, DNS, NIS, Active Directory implement unified access to
information needed for remote computing

10.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Sharing – Failure Modes

 All file systems have failure modes
 For example corruption of directory structures or other non-

user data, called metadata
 Remote file systems add new failure modes, due to network

failure, server failure
 Recovery from failure can involve state information about

status of each remote request
 Stateless protocols such as NFS v3 include all information in

each request, allowing easy recovery but less security

10.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

File Sharing – Consistency Semantics

 Specify how multiple users are to access a shared file
simultaneously
 Similar to Ch 5 process synchronization algorithms

 Tend to be less complex due to disk I/O and network
latency (for remote file systems

 Andrew File System (AFS) implemented complex remote file
sharing semantics

 Unix file system (UFS) implements:
Writes to an open file visible immediately to other users of

the same open file
 Sharing file pointer to allow multiple users to read and write

concurrently
 AFS has session semantics

Writes only visible to sessions starting after the file is
closed

10.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Protection

 File owner/creator should be able to control:
 what can be done
 by whom

 Types of access
 Read
 Write
 Execute
 Append
 Delete
 List

10.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Lists and Groups

 Mode of access: read, write, execute
 Three classes of users on Unix / Linux
 RWX
 a) owner access 7 ⇒ 1 1 1

 RWX
 b) group access 6 ⇒ 1 1 0
 RWX
 c) public access 1 ⇒ 0 0 1
 Ask manager to create a group (unique name), say G, and add

some users to the group.
 For a particular file (say game) or subdirectory, define an

appropriate access.

Attach a group to a file
 chgrp G game

10.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows 7 Access-Control List Management

10.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Sample UNIX Directory Listing

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 11

	Chapter 10: �File-System Interface
	Chapter 11: File-System Interface
	Objectives
	File Concept
	File Attributes
	File info Window on Mac OS X
	File Operations
	Open Files
	Open File Locking
	File Locking Example – Java API
	File Locking Example – Java API (Cont.)
	File Types – Name, Extension
	File Structure
	Sequential-access File
	Access Methods
	Simulation of Sequential Access on Direct-access File
	Other Access Methods
	Example of Index and Relative Files
	Directory Structure
	Disk Structure
	A Typical File-system Organization
	Types of File Systems
	Operations Performed on Directory
	Directory Organization
	Single-Level Directory
	Two-Level Directory
	Tree-Structured Directories
	Tree-Structured Directories (Cont.)
	Tree-Structured Directories (Cont)
	Acyclic-Graph Directories
	Acyclic-Graph Directories (Cont.)
	General Graph Directory
	General Graph Directory (Cont.)
	File System Mounting
	Mount Point
	File Sharing
	File Sharing – Remote File Systems
	File Sharing – Failure Modes
	File Sharing – Consistency Semantics
	Protection
	Access Lists and Groups
	Windows 7 Access-Control List Management
	A Sample UNIX Directory Listing
	End of Chapter 11

