Chapter 4. Threads

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

r o Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries
Implicit Threading
Threading Issues

Operating System Examples

Operating System Concepts Essentials — 2" Edition 4.2 Silberschatz, Galvin and Gagne ©2013

v.-z Objectives

B To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer
systems

m To discuss the APIs for the Pthreads, Windows, and Java
thread libraries

B To explore several strategies that provide implicit threading
To examine issues related to multithreaded programming

To cover operating system support for threads in Windows and
Linux

Operating System Concepts Essentials — 2" Edition 4.3 Silberschatz, Galvin and Gagne ©2013

gF Motivation

B Most modern applications are multithreaded
Threads run within application

Multiple tasks with the application can be implemented by
separate threads

e Update display

e Fetch data

e Spell checking

e Answer a network request

® Process creation is heavy-weight while thread creation is
light-weight

m Can simplify code, increase efficiency
m Kernels are generally multithreaded

/‘»““ \1

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 44

&f,;:i Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

Y

server thread

Y

client

(3) resume listening
for additional
client requests

“

Operating System Concepts Essentials — 2" Edition 45 Silberschatz, Galvin and Gagne ©2013

y

N

s,

o "'?'-"?'.\-1

G5 Benefits

B Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

m Resource Sharing — threads share resources of process, easier
than shared memory or message passing

B Economy — cheaper than process creation, thread switching
lower overhead than context switching

m Scalability — process can take advantage of multiprocessor
architectures

Operating System Concepts Essentials — 2" Edition 4.6 Silberschatz, Galvin and Gagne ©2013

Multicore Programming

m Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

Dividing activities
Balance

Data splitting

Data dependency
Testing and debugging

m Parallelism implies a system can perform more than one task
simultaneously

B Concurrency supports more than one task making progress

Single processor / core, scheduler providing concurrency

Operating System Concepts Essentials — 2" Edition 4.7 Silberschatz, Galvin and Gagne ©2013

=
3

«¢%’ Multicore Programming (Cont.)

m Types of parallelism

e Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

e Task parallelism — distributing threads across cores, each
thread performing unique operation

m As # of threads grows, so does architectural support for threading
e CPUs have cores as well as hardware threads

e Consider Oracle SPARC T4 with 8 cores, and 8 hardware
threads per core

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 4.8

v Concurrency vs. Parallelism

m Concurrent execution on single-core system:

single core

T1‘TQ‘T3‘T4‘T1‘TQ‘T3‘T4‘T1‘...‘

time ,
m Parallelism on a multi-core system:
core 1 T4 T3 T4 Ts T4
core 2 To Ty Ts Ty To
time ,
4.9 Silberschatz, Galvin and Gagne ©201?;

Operating System Concepts Essentials — 2" Edition

-
4

!

=™

Single and Multithreaded Processes

code

data

files

registers

stack

thread — ;

single-threaded process

Operating System Concepts Essentials — 2" Edition

code data files
registers ||| registers ||| registers
stack stack stack
<

— thread

multithreaded process

Silberschatz, Galvin and Gagne ©2013

J

1-.-:;

)

w o Amdahl’s Law

m |dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

S is serial portion
N processing cores

1

speedup < ———
s+

m Thatis, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

m As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

m But does the law take into account contemporary multicore systems?

N \,: \
=N
7%

i

Operating System Concepts Essentials — 2" Edition 4.11 Silberschatz, Galvin and Gagne ©2013

™

User Threads and Kernel Threads

m User threads - management done by user-level threads library

® Three primary thread libraries:
e POSIX Pthreads
e Windows threads

Kernel threads - Supported by the Kernel

Java threads

Examples — virtually all general purpose operating systems, including:

Windows
Solaris
Linux
Tru64 UNIX
Mac OS X

Operating System Concepts Essentials — 2" Edition 412

o -"\l-.._‘
A PN

Silberschatz, Galvin and Gagne ©2013

G5 Multithreading Models

® Many-to-One

B One-to-One

® Many-to-Many

Al

Operating System Concepts Essentials — 2" Edition 4.13 Silberschatz, Galvin and Gagne ©2013

P Many-to-One

® Many user-level threads mapped to
single kernel thread

One thread blocking causes all to block

Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time ; ;‘—m”hfead

Few systems currently use this model
Examples:

e Solaris Green Threads

e GNU Portable Threads

<«<— kernel thread

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 414

w»’ One-to-One

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread
More concurrency than many-to-one

Number of threads per process sometimes
restricted due to overhead

m Examples
e Windows

e Linux
e Solaris 9 and later ‘ ‘ ‘

Operating System Concepts Essentials — 2" Edition 415

<«— user thread

é <«——kernel thread

Silberschatz, Galvin and Gagne ©2013

3

o M’J

55 Many-to-Many Model

m Allows many user level threads to be
mapped to many kernel threads

m Allows the operating system to create
a sufficient number of kernel threads

Solaris prior to version 9 ; ;

Windows with the ThreadFiber ;

§<— user thread
package

<«——kernel thread

\
WA Y

e]
g

ol

Operating System Concepts Essentials — 2" Edition 4.16 Silberschatz, Galvin and Gagne ©2013

GF Two-level Model

m Similar to M:M, except that it allows a user thread to be
bound to kernel thread

m Examples
o IRIX ; ;
e HP-UX ;
e True4 UNIX
e Solaris 8 and earlier

; ; <«— user thread

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 417

Thread Libraries

m Thread library provides programmer with API for creating
and managing threads

® Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

Operating System Concepts Essentials — 2" Edition 4.18 Silberschatz, Galvin and Gagne ©2013

— %

:; ,—/ Pt h e ad S

4

B May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

B Specification, not implementation

m API specifies behavior of the thread library, implementation is
up to development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)

/"»ﬁ -\1

Operating System Concepts Essentials — 2" Edition 4.19 Silberschatz, Galvin and Gagne ©2013

\ A?mj <
o Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])

{

pthread t tid; /* the thread identifier */
pthread_attr_t attr; /x set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv([1]) < 0) {
fprintf (stderr,"’%d must be >= 0\n",atoi(argv[i]));
return -1;

}

Operating System Concepts Essentials — 2" Edition 4.20 Silberschatz, Galvin and Gagne ©2013

g;*f Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */
pthread.create(&tid,&attr,runner,argv(1]);
/* wait for the thread to exit */
pthread_join(tid,NULL);

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread_exit(0);

Operating System Concepts Essentials — 2" Edition 4.21 Silberschatz, Galvin and Gagne ©2013

&gy{ Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread join(workers[i], NULL);

oA
e el
a
“l <l

Operating System Concepts Essentials — 2" Edition 4.22 Silberschatz, Galvin and Gagne ©2013

i

&m-,;;'—‘ﬁ Windows Multithreaded C Program

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* the thread runs in this separate function */
DWORD WINAPI Summation(LPVOID Param)
{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i;
return 0;

}

int main(int argc, char *argvl[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

if (arge !'= 2) {
fprintf (stderr,"An integer parameter is required\n");
return -1;

}

Param = atoi(argv[i]);

if (Param < 0) {
fprintf (stderr,"An integer >= 0 is required\n");
return -1;

}

Operating System Concepts Essentials — 2" Edition 4.23 Silberschatz, Galvin and Gagne ©2013

a3
wa

*3 Windows Multithreaded C Program (Cont.)

/* create the thread */
ThreadHandle = CreateThread(
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
gParam, /* parameter to thread function */
0, /* default creation flags */
&ThreadId); /* returns the thread identifier */

if (ThreadHandle != NULL) {
/* now wait for the thread to finish */

WaitForSingleObject (ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf("sum = %d\n",Sum);

/‘» """

Operating System Concepts Essentials — 2" Edition 4.24 Silberschatz, Galvin and Gagne ©2013

g T Java Threads

m Java threads are managed by the JVM

m Typically implemented using the threads model provided by
underlying OS

m Java threads may be created by:

public interface Runnable

{
}

public abstract void runf() ;

e Extending Thread class
e Implementing the Runnable interface

Operating System Concepts Essentials — 2" Edition 4.25 Silberschatz, Galvin and Gagne ©2013

«$ Java Multithreaded Program

class Sum

{

private int sum;

public int getSum() {
return sum;

}

public void setSum(int sum) {
this.sum = sum;

}
}

class Summation implements Runnable
private int upper;
private Sum sumValue;

public Summation (int upper, Sum sumValue) {
this.upper = upper;
this.sumValue = sumValue;

}

public void run() {
int sum = 0;
for (int i = 0; i <= upper; i++)
sum += 1i;
sumValue. setSum(sum) ;

}

} /

Operating System Concepts Essentials — 2"d Edition 4.26 Silberschatz, Galvin and Gagne ©2013

&mw/ Java Multithreaded Program (Cont.)

public class Driver
{
public static void main(String[] args) {
if (args.length > 0) {
if (Integer.parselnt(args([0]) < 0)
System.err.println(args[0] + " must be >= 0.");

else {
Sum sumObject = new Sum() ;
int upper = Integer.parselnt (args[0]);

Thread thrd = new Thread(new Summation (upper, sumObject)) ;
thrd.start () ;
try {
thrd.join() ;
System.out.println
("The sum of "+upper+" is "+sumObject.getSum()) ;
} catch (InterruptedException ie) { }

}
}

else
System.err.println("Usage: Summation <integer values"); }

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 4.27

S Implicit Threading

® Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

m Creation and management of threads done by compilers and
run-time libraries rather than programmers

B Three methods explored
e Thread Pools
e OpenMP
e Grand Central Dispatch

m Other methods include Microsoft Threading Building Blocks
(TBB), java.util._concurrent package

/‘»ﬂ -'\1

Operating System Concepts Essentials — 2" Edition 4.28 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

S Thread Pools

m Create a number of threads in a pool where they await work
m Advantages:

e Usually slightly faster to service a request with an existing
thread than create a new thread

e Allows the number of threads in the application(s) to be
bound to the size of the pool

e Separating task to be performed from mechanics of
creating task allows different strategies for running task

» l.e.Tasks could be scheduled to run periodically
® Windows API supports thread pools:

DWORD WINAPI PoolFunction (AVOID Param)
/*
* this function runs as a separate thread.

*/

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 4.29

=

> -2 OpenMP

m Set of compiler directives and an
API for C, C++, FORTRAN

® Provides support for parallel
programming in shared-memory
environments

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv[])

®m |dentifies parallel regions — {
blocks of code that can run in /* sequential code */
parallel
#pragma omp parallel #pragma omp parallel
Create as many threads as there are printf("I am a parallel region.");
cores }
#pragma omp parallel for
for(i=0;i<N;i1++) { /* sequential code */
cli] = a[i1] + b[i];
return 0;
¥ }

Run for loop in parallel

Operating System Concepts Essentials — 2" Edition 4.30 Silberschatz, Galvin and Gagne ©2013

]
".f}‘_

PN

WG Grand Central Dispatch
m Apple technology for Mac OS X and iOS operating systems
m Extensions to C, C++ languages, API, and run-time library
m Allows identification of parallel sections
B Manages most of the details of threading
m Blockisin*N}' - 7{ printf("'l am a block'); }
®m Blocks placed in dispatch queue

e Assigned to available thread in thread pool when removed
from queue

Operating System Concepts Essentials — 2" Edition 4.31 Silberschatz, Galvin and Gagne ©2013

=1,

™ .
T Grand Central Dispatch

m Two types of dispatch queues:

e serial — blocks removed in FIFO order, queue is per process,
called main queue

» Programmers can create additional serial queues within
program

e concurrent — removed in FIFO order but several may be
removed at a time

» Three system wide queues with priorities low, default, high

dispatch queue t queue = dispatch get global gqueue
(DISPATCH QUEUE PRIORITY DEFAULT, O0);

dispatch async (queue, "{ printf ("I am a block."); });

Operating System Concepts Essentials — 2" Edition 4.32 Silberschatz, Galvin and Gagne ©2013

4

P Threading Issues

m Semantics of fork() and exec() system calls
m Signal handling
e Synchronous and asynchronous
® Thread cancellation of target thread
e Asynchronous or deferred
Thread-local storage
Scheduler Activations

Operating System Concepts Essentials — 2" Edition 4.33

Silberschatz, Galvin and Gagne ©2013

=

m‘:’—?‘r Semantics of fork() and exec()

m Does fork()duplicate only the calling thread or all
threads?

e Some UNIXes have two versions of fork

m exec() usually works as normal — replace the running
process including all threads

bR
S e S\
' \
“L =)

Operating System Concepts Essentials — 2" Edition 4.34 Silberschatz, Galvin and Gagne ©2013

"G F Signal Handling

B Signals are used in UNIX systems to notify a process that a
particular event has occurred.

m Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

m Every signal has default handler that kernel runs when
handling signal

e User-defined signal handler can override default
e For single-threaded, signal delivered to process

Operating System Concepts Essentials — 2" Edition 4.35 Silberschatz, Galvin and Gagne ©2013

N Signal Handling (Cont.)

® Where should a signal be delivered for multi-threaded?

e Deliver the signal to the thread to which the signal
applies

e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process

e Assign a specific thread to receive all signals for the
process

Operating System Concepts Essentials — 2"d Edition 4.36 Silberschatz, Galvin and Gagne ©2013

S Thread Cancellation

Terminating a thread before it has finished
Thread to be canceled is target thread
m Two general approaches:

e Asynchronous cancellation terminates the target thread
immediately

e Deferred cancellation allows the target thread to periodically
check if it should be cancelled

m Pthread code to create and cancel a thread:

pthread t tid;

/% create the thread */
pthread create(&tid, 0, worker, NULL) ;

/* cancel the thread x/
pthread-cancel (tid) ;

Operating System Concepts Essentials — 2" Edition 4.37 Silberschatz, Galvin and Gagne ©2013

]
1{"‘_

xq-f:;;'fi Thread Cancellation (Cont.)

® Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

Mode State Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

m If thread has cancellation disabled, cancellation remains pending
until thread enables it

m Default type is deferred

e Cancellation only occurs when thread reaches cancellation
point

» l.e. pthread_testcancel ()
» Then cleanup handler is invoked
B On Linux systems, thread cancellation is handled through signals

Operating System Concepts Essentials — 2"d Edition 4.38 Silberschatz, Galvin and Gagne ©2013

BN

s

J——
T Thread-Local Storage

m Thread-local storage (TLS) allows each thread to have its
own copy of data

m Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

m Different from local variables

e Local variables visible only during single function
invocation

e TLS visible across function invocations
®m Similar to static data

e TLS is unique to each thread

Operating System Concepts Essentials — 2" Edition 4.39 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

> "'?‘-’"?'rj

g Scheduler Activations

® Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the 3 «—— user thread
application

m Typically use an intermediate data structure
between user and kernel threads — lightweight
process (LWP)

e Appears to be a virtual processor on which
| k |*=—kemel thread

process can schedule user thread to run R
e Each LWP attached to kernel thread
e How many LWPs to create?

LWP | =— lightweight process

m Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

B This communication allows an application to
maintain the correct number kernel threads

Operating System Concepts Essentials — 2" Edition 4.40 Silberschatz, Galvin and Gagne ©2013

G5 Operating System Examples

® Windows Threads
® Linux Threads

Al

Operating System Concepts Essentials — 2" Edition 4.41 Silberschatz, Galvin and Gagne ©2013

P Windows Threads

® Windows implements the Windows API — primary API for Win
98, Win NT, Win 2000, Win XP, and Win 7

® Implements the one-to-one mapping, kernel-level
m Each thread contains
e Athreadid

e Register set representing state of processor

e Separate user and kernel stacks for when thread runs in
user mode or kernel mode

e Private data storage area used by run-time libraries and
dynamic link libraries (DLLS)

m The register set, stacks, and private storage area are known as
the context of the thread

,_"""-:'l

i > y“s“"‘; _.\;\l
ig “%—(:

“l 29K

Operating System Concepts Essentials — 2" Edition 4.42 Silberschatz, Galvin and Gagne ©2013

_'h

e ;:‘i Windows Threads (Cont.)

® The primary data structures of a thread include:

e ETHREAD (executive thread block) — includes pointer to
process to which thread belongs and to KTHREAD, in
kernel space

e KTHREAD (kernel thread block) — scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

e TEB (thread environment block) — thread id, user-mode
stack, thread-local storage, in user space

/‘»““ -\1

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 4.43

«§%’ Windows Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
- scheduling
- and
synchronization
. information
kernel TEB
stack
> thread identifier
. user
. stack
thread-local
storage
kernel space user space

Al

Operating System Concepts Essentials — 2"d Edition 4.44 Silberschatz, Galvin and Gagne ©2013

N

H‘;:* Linux Threads

s,

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call

clone() allows a child task to share the address space of the
parent task (process)

e Flags control behavior

flag meaning
CLONE_FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

B struct task struct points to process data structures
(shared or unique)

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 4.45

End of Chapter 4

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 4: Threads
	Chapter 4: Threads
	Objectives
	Motivation
	Multithreaded Server Architecture
	Benefits
	Multicore Programming
	Multicore Programming (Cont.)
	Concurrency vs. Parallelism
	Single and Multithreaded Processes
	Amdahl’s Law
	User Threads and Kernel Threads
	Multithreading Models
	Many-to-One
	One-to-One
	Many-to-Many Model
	Two-level Model
	Thread Libraries
	Pthreads
	Pthreads Example
	Pthreads Example (Cont.)
	Pthreads Code for Joining 10 Threads
	Windows Multithreaded C Program
	Windows Multithreaded C Program (Cont.)
	Java Threads
	Java Multithreaded Program
	Java Multithreaded Program (Cont.)
	Implicit Threading
	Thread Pools
	OpenMP
	Grand Central Dispatch
	Grand Central Dispatch
	Threading Issues
	Semantics of fork() and exec()
	Signal Handling
	Signal Handling (Cont.)
	Thread Cancellation
	Thread Cancellation (Cont.)
	Thread-Local Storage
	Scheduler Activations
	Operating System Examples
	Windows Threads
	Windows Threads (Cont.)
	Windows Threads Data Structures
	Linux Threads
	End of Chapter 4

