Chapter 2. Operating-System
Structures

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013



‘%:;"2‘5 Chapter 2. Operating-System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Operating System Debugging

Operating System Generation

System Boot

Operating System Concepts Essentials — 2" Edition 2.2 Silberschatz, Galvin and Gagne ©2013



pi
!'}‘r

55 Objectives

B To describe the services an operating system provides to
users, processes, and other systems

®m To discuss the various ways of structuring an operating
system

® To explain how operating systems are installed and
customized and how they boot

Operating System Concepts Essentials — 2" Edition 2.3 Silberschatz, Galvin and Gagne ©2013



]
".f}‘_

o : '
&rv Operating System Services

4

m Operating systems provide an environment for execution of programs
and services to programs and users

®  One set of operating-system services provides functions that are
helpful to the user:

e User interface - Almost all operating systems have a user
interface (Ul).

» Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

e Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

e |/O operations - A running program may require I/O, which may
involve a file or an I/O device

Operating System Concepts Essentials — 2" Edition 2.4 Silberschatz, Galvin and Gagne ©2013




4%’ Operating System Services (Cont.)

® One set of operating-system services provides functions that are helpful to
the user (Cont.):

e File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

e Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

S WY
- /‘k; S
o ‘%-:.

AYx

Operating System Concepts Essentials — 2" Edition 25 Silberschatz, Galvin and Gagne ©2013




"

o | Operating System Services (Cont.)

®  Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

e Accounting - To keep track of which users use how much and what
kinds of computer resources

e Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

_____,/{:" : -T;_h.‘;}.}
e

i

Operating System Concepts Essentials — 2nd Edition 2.6 Silberschatz, Galvin and Gagne ©2013




{ 4.

ﬂ%;:';-"‘i A View of Operating System Services

s W,

!;r

user and other system programs

GUI batch command line

user interfaces

system calls
program 11O file I resource .
4 - communication : accountin
execution operations systems allocation J
error pro;?]cc:}lon
detection _ security
services

operating system

hardware

Operating System Concepts Essentials — 2" Edition 2.7 Silberschatz, Galvin and Gagne ©2013



)
{2

h{;"—"ﬁ User Operating System Interface - CL|

CLI or command interpreter allows direct command entry

e Sometimes implemented in kernel, sometimes by systems
program

e Sometimes multiple flavors implemented — shells
e Primarily fetches a command from user and executes it

e Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

Operating System Concepts Essentials — 2" Edition 2.8 Silberschatz, Galvin and Gagne ©2013



Bourne Shell Command Interpreter

PEG-Mac-Pro:~ pbg% pwd
SlUsers/pba

PBG-Mac-Pro:~ pbg$% ping 192.168.1.1
PING 192.168.1.1 {192.168.1.1): 56 data bytes

b4 bytes from 192.168.1.1:
64 bytes from 1972.168.1.1:
AL

icmp_seq=@ ttl=64 time=2.257 m=s
icmp_seg=1 ttl=64 time=1.262 ms

--- 192.168.1.1 ping staotistics ---
? packets tronsmitted, 2 packets received, @.8% packet loss

round-trip mindavg/max/stddev = 1.262/1.760/2.257/0.498 ms

PEG-Mac-Pro:~ pbg% D

Operating System Concepts Essentials — 2"d Edition

2.9

Default
= -,
O & W
5 "/
Mew Info  Close Execute Bookmarks
—l Default I Default
PEG-Mac-Pro:~ pbg% w
15:24 wup 56 mins, 2 users, load averages: 1.51 1.53 1.65
USER TTY FROM LOGINE IDLE WHAT
pbg console - 14:34 50 -
pbg =000 - 15:85 - W
PEG-Mac-Pro:~ pbg% iostot 5
disk@ diskl diskl@ cpu load average

KBSt tps ME/s KBSt tps MB/s KBSt tps MESs us sy id 1m Sm 15m

33.75 343 11,380 64.31 14 ©O.88 39,67 O ©.82 11 5 84 1.51 1.53 1.65

.27 320 1.65 8.6 @ 0.00 @.96 @ 9.080 4 294 1.39 1.51 1.65

4,28 329 1.37 @.06 @ 0.00 @.06 @ 0.00 5 302 1.44 1.51 1.65
AL
PEG-Mac-Pro:~ pbg} ls
Applications Music WebEx
Applications (Parallels) Pando Pockages config. log
Desktop Pictures getsmartdata. txt
Documents Public imp
Downloads Sites log
Dropbox Thumbs . db panda-dist
Library Virtual Machines prob.txt
Movies Volumes scripts

“

Silberschatz, Galvin and Gagne ©2013



-
&
4 w»]

~$»7 User Operating System Interface - GUI

m User-friendly desktop metaphor interface
e Usually mouse, keyboard, and monitor
e Icons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

e |nvented at Xerox PARC
m Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

e Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

i > y“s“"‘; _.\;\l
o “%-( 1
“l 29K

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.10



gt Touchscreen Interfaces

® Touchscreen devices require new
interfaces

e Mouse not possible or not desired

e Actions and selection based on
gestures

e Virtual keyboard for text entry
® \oice commands.

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.11




" @ Grab File Edn [IETENE - 5 m 1 & 40 1506 EOT o8 @
fig-dir
E Ll m@a
dviea=  Mitusess e *  Agalcalmomis  IFEGe XML iDake
0 Gt [0 fwdr |

“ K D te Modified Size Apalicatian
FOF Eradnod, 1050 el Am
oG EC18/07, 5530 FTEE lnkicao
Foctab e Setatit Crashiss I vege Tocyy. 10600 e Fredme
G lwn_ pE ] L BRE ki
T F Socueen iy, 3R TP hA L AR hrane

0 Hecwark o
3 Froedaen Stipe - g
2\ Maciniash HD o
m o
— Untiled 2

8 IhG

4 TPECE

© o

* Poter Base Galv s iFod

Vof £ iters selected - 7343 Clawilazle 5.0 G2 use:

L Afdreas Book
wrary and Thessurus

0, aperanng system

apsersat-ing sys-tem
o
e sofiware = 3 COMUACT 5

[[om raa| ¢ |[aen rio T | i 1BAY-APRLE
@ @Cj : wtiver BOO-275-2273
It s BpRE O
ok 1 Infivita Loop

Copest no CA 82074
Usied States

Operating System Concepts Essentials — 2" Edition 2.12 Silberschatz, Galvin and Gagne ©2013



A
r;}!

/)
T System Calls

® Programming interface to the services provided by the OS
m  Typically written in a high-level language (C or C++)

® Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

®m Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this
text are generic

£ ~ .“ v. A\ .‘
-//"%;; B
o j%%-f

Al PN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.13



=

ot Example of System Calls

B System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Y,

A

oy -‘\'\l. i\
S e |
'\
# UL

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.14



)

GF Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int £d4d, woid *buf, size_ t count)
I | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:
® int fd—the file descriptor to be read
¢ void *buf—a buffer where the data will be read into
* size-t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Operating System Concepts Essentials — 24 Edition 2.15 Silberschatz, Galvin and Gagne ©2013



J

1-1:;

> "'?‘-’"?'rj

o

=3/ System Call Implementation

m Typically, a number associated with each system call

e System-call interface maintains a table indexed according to
these numbers

m The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

® The caller need know nothing about how the system call is
implemented

e Just needs to obey API and understand what OS will do as a
result call

e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

£\
. ﬂ"%;; _\\\1
. ). ,%%_(

A9

Operating System Concepts Essentials — 24 Edition 2.16 Silberschatz, Galvin and Gagne ©2013



H‘J—‘ff API — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
. open ()
|mplementation
i » of open ()
. system call
return

Operating System Concepts Essentials — 24 Edition 2.17 Silberschatz, Galvin and Gagne ©2013



-,
<
)
-

-w— System Call Parameter Passing

m Often, more information is required than simply identity of desired
system call

e Exact type and amount of information vary according to OS
and call

m Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

Operating System Concepts Essentials — 2" Edition 2.18

SE
o ‘i‘i‘;{'

Silberschatz, Galvin and Gagne ©2013



=

~$»7  Parameter Passing via Table

—> X

register

X: parameters
for call

— ™ use parameters code for
load address X / from table X system
=

system call 13 call 13

user program

operating system

Operating System Concepts Essentials — 24 Edition 2.19 Silberschatz, Galvin and Gagne ©2013



«

4

g —
Rl

r & Types of System Calls

® Process control
e create process, terminate process
e end, abort
e |oad, execute
e (et process attributes, set process attributes
e wait for time
e wait event, signal event
e allocate and free memory
e Dump memory if error
e Debugger for determining bugs, single step execution
e Locks for managing access to shared data between processes

Operating System Concepts Essentials — 24 Edition 2.20 Silberschatz, Galvin and Gagne ©2013



A

(8
,f;.-:-wv».l

5P Types of System Calls

® File management
e create file, delete file
e open, close file
e read, write, reposition
e get and set file attributes
® Device management
e request device, release device
e read, write, reposition
e (et device attributes, set device attributes
e |ogically attach or detach devices

Operating System Concepts Essentials — 24 Edition 2.21 Silberschatz, Galvin and Gagne ©2013



/2

A

. "“F"‘"‘J

%/ Types of System Calls (Cont.)

® [nformation maintenance

e (et time or date, set time or date

e get system data, set system data

e get and set process, file, or device attributes
®m Communications

e create, delete communication connection

e send, receive messages if message passing model to host
name or process name

» From client to server

e Shared-memory model create and gain access to memory
regions

e transfer status information
e attach and detach remote devices

Operating System Concepts Essentials — 24 Edition 2.22 Silberschatz, Galvin and Gagne ©2013



y

iy

%  Types of System Calls (Cont.)

® Protection
e Control access to resources
e Get and set permissions
e Allow and deny user access

“

Operating System Concepts Essentials — 2" Edition 2.23 Silberschatz, Galvin and Gagne ©2013




2,

Sy

ol
7

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Operating System Concepts Essentials — 2" Edition

Windows

CreateProcess ()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapView0fFile ()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

2.24

Unix

fork()
exit ()
wait()

open()
read()
write()
close()

ioctl()
read ()
write()

getpid()
alarm()
sleep()

pipe ()
shmget ()
mmap ()

chmod ()
umask ()
chown()

Silberschatz, Galvin and Gagne ©2013




£

"

mi’—“ﬁ Standard C Library Example

m C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main { )

printf ("Greetings"); |-

return 0;
}

user
mode ¥

standard C library —_—
kernel
mode

write ()
write ()
system call

Operating System Concepts Essentials — 24 Edition 2.25 Silberschatz, Galvin and Gagne ©2013




gF Example: MS-DOS

m Single-tasking

m Shell invoked when system

booted free memory
B Simple method to run
program free memory
e No process created process

® Single memory space

®m |oads program into memory,

command

overwriting all but the kernel interpreter command
] interpreter
® Program exit -> shell Fo—
erne
reloaded Sl
(a) (b)
At system startup running a program

Operating System Concepts Essentials — 2"d Edition 2.26 Silberschatz, Galvin and Gagne ©2013




J

1-1:;

o Example: FreeBSD

Unix variant
Multitasking

m User login -> invoke user’ s choice of
shell

m  Shell executes fork() system call to create
process

e Executes exec() to load program into
process

e Shell waits for process to terminate or
continues with user commands

B Process exits with:
e code =0 - no error
e code >0 - error code

Operating System Concepts Essentials — 2" Edition 2.27

process D

free memory

process C

interpreter

process B

kernel

i > y“s“"‘; _.\;\l
o “%-( 1
“l 29K

Silberschatz, Galvin and Gagne ©2013



=

S
o "'?'-"?'.\-1

q%’p— 4

System Programs

B System programs provide a convenient environment for program
development and execution. They can be divided into:

File manipulation

Status information sometimes stored in a File modification
Programming language support

Program loading and execution

Communications

Background services

Application programs

B Most users’ view of the operation system is defined by system
programs, not the actual system calls

£, .v. Al
o &-{

v

Operating System Concepts Essentials — 24 Edition 2.28 Silberschatz, Galvin and Gagne ©2013



J

N

PN

w System Programs

® Provide a convenient environment for program development and
execution

e Some of them are simply user interfaces to system calls; others
are considerably more complex

® File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

m Status information

e Some ask the system for info - date, time, amount of available
memory, disk space, number of users

e Others provide detailed performance, logging, and debugging
information

e Typically, these programs format and print the output to the
terminal or other output devices

e Some systems implement aregistry - used to store and
retrieve configuration information

i '. ‘,_\ A '.-\:‘

. /‘k; S
o ‘%-:.

DA

Operating System Concepts Essentials — 24 Edition 2.29 Silberschatz, Galvin and Gagne ©2013




“w
o,
L uﬁ.’*hl

-u-' System Programs (Cont.)

m File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

®m Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

® Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

®m Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

e Allow users to send messages to one another’ s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

ot WY
- /‘%; S
4 ‘tk‘;_-f'

“ <0

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.30



=

{ s
o

ot System Programs (Cont.)

m Background Services
e Launch at boot time
» Some for system startup, then terminate
» Some from system boot to shutdown

e Provide facilities like disk checking, process scheduling, error
logging, printing

e Run in user context not kernel context

e Known as services, subsystems, daemons

m Application programs
e Don’t pertain to system
e Run by users
e Not typically considered part of OS
e Launched by command line, mouse click, finger poke

-

)

ay

Operating System Concepts Essentials — 24 Edition 2.31 Silberschatz, Galvin and Gagne ©2013



]

1-1:;

&;;ﬁ Operating System Design and Implementation

m Design and Implementation of OS not “solvable”, but some
approaches have proven successful

®m Internal structure of different Operating Systems can vary widely
m Start the design by defining goals and specifications
m Affected by choice of hardware, type of system

m User goals and System goals

e User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

e System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

i > y“s“"‘; _.\;\l
o “%-(
“l 29K

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.32



=

‘%g‘p—f’ Operating System Design and Implementation (Cont.)

® [mportant principle to separate

Policy: What will be done?
Mechanism: How to do it?

® Mechanisms determine how to do something, policies decide
what will be done

® The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example — timer)

m Specifying and designing an OS is highly creative task of
software engineering

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.33



Implementation

Much variation
e Early OSes in assembly language
e Then system programming languages like Algol, PL/1
e Now C, C++
Actually usually a mix of languages
e Lowest levels in assembly
e Main body in C

e Systems programs in C, C++, scripting languages like PERL,

Python, shell scripts
More high-level language easier to port to other hardware
e But slower
Emulation can allow an OS to run on non-native hardware

/‘»““ -'\1

Operating System Concepts Essentials — 24 Edition 2.34 Silberschatz, Galvin and Gagne ©2013



%  Operating System Structure

m General-purpose OS is very large program
®m Various ways to structure ones

e Simple structure — MS-DOS

e More complex -- UNIX

e Layered — an abstrcation

e Microkernel -Mach

RN
e el
a
)

>
“l

Operating System Concepts Essentials — 24 Edition 2.35 Silberschatz, Galvin and Gagne ©2013



?

q;‘ﬁ Simple Structure -- MS-DOS

|

®m MS-DOS — written to provide the

most functionality in the least
space F
. _ application program
e Not divided into modules

e Although MS-DOS has some
structure, its interfaces and
levels of functionality are not
well separated

resident system program

MS-DOS device drivers

ROM BIOS device drivers ’

Al

Operating System Concepts Essentials — 2"d Edition 2.36 Silberschatz, Galvin and Gagne ©2013




el

o Non Simple Structure -- UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

e Systems programs
e The kernel

» Consists of everything below the system-call interface
and above the physical hardware

» Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

/‘»ﬂ -'\1

Operating System Concepts Essentials — 24 Edition 2.37 Silberschatz, Galvin and Gagne ©2013




]

4

e

- 3
af‘.ml
&r"""gg
. A

«¢%7 Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

= handling swapping block 1/O page replacement

O character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Operating System Concepts Essentials — 24 Edition 2.38 Silberschatz, Galvin and Gagne ©2013



r & Layered Approach

® The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

. . I 0
®  With modularity, layers are Erluiare

selected such that each uses
functions (operations) and
services of only lower-level
layers

Operating System Concepts Essentials — 24 Edition 2.39 Silberschatz, Galvin and Gagne ©2013




r o Microkernel System Structure

Moves as much from the kernel into user space
Mach example of microkernel
e Mac OS X kernel (Darwin) partly based on Mach

m  Communication takes place between user modules using
message passing

m Benefits:
e Easier to extend a microkernel
e Easier to port the operating system to new architectures
e More reliable (less code is running in kernel mode)
e More secure
m Detriments:

e Performance overhead of user space to kernel space
communication

Operating System Concepts Essentials — 24 Edition 2.40 Silberschatz, Galvin and Gagne ©2013



A
y

s,

~“$»7  Microkernel System Structure

Application File Device user
Program System Driver mode

' messages ' ' messages H

CPU
scheduling

memory
managment

kemel
mode

Interprocess
Communication

A microkernel 4

hardware

Operating System Concepts Essentials — 24 Edition 2.41 Silberschatz, Galvin and Gagne ©2013



]

4

e

! Modules

B Many modern operating systems implement loadable kernel
modules

e Uses object-oriented approach

e Each core component is separate

e Each talks to the others over known interfaces

e Eachis loadable as needed within the kernel
m Overall, similar to layers but with more flexible

e Linux, Solaris, etc

Operating System Concepts Essentials — 24 Edition 2.42 Silberschatz, Galvin and Gagne ©2013



r o Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel loadable

miscellaneous
modules

system calls

executable
formats

STREAMS
modules

Operating System Concepts Essentials — 2" Edition 2.43 Silberschatz, Galvin and Gagne ©2013



y

s

.

w o Hybrid Systems

B Most modern operating systems are actually not one pure model

e Hybrid combines multiple approaches to address
performance, security, usability needs

e Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of functionality

e Windows mostly monolithic, plus microkernel for different
subsystem personalities

m Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa
programming environment

e Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus I/0O kit and dynamically loadable modules (called
kernel extensions)

F - .I-' e ¥ v: Ll '..'I.. ‘
= R
o '%;r-('

A%

Operating System Concepts Essentials — 24 Edition 2.44 Silberschatz, Galvin and Gagne ©2013




=
/ N, h
(i P
4]

. Mac OS X Structure

graphical user interface Aqua

application environments and services

(Cesp >

kernel environment
BSD

Mach

/O kit kernel extensions

o ey
____,/{k-?”"%':; \.‘3.]'
A

i

Operating System Concepts Essentials — 24 Edition 2.45 Silberschatz, Galvin and Gagne ©2013




_'h

o) :
“%"‘" IOS

m Apple mobile OS for iPhone, iPad
e Structured on Mac OS X, added functionality
e Does not run OS X applications natively

» Also runs on different CPU architecture Cocoa Touch
(ARM vs. Intel)
e Cocoa Touch Objective-C API for Media Services

developing apps

e Media services layer for graphics, audio, Core Services

video

Core OS

e Core services provides cloud computing,
databases

e Core operating system, based on Mac OS X
kernel

/‘»““ -'\1

Operating System Concepts Essentials — 24 Edition 2.46 Silberschatz, Galvin and Gagne ©2013




J

1-.-:;

) g——— .
g Android

B Developed by Open Handset Alliance (mostly Google)
e Open Source
Similar stack to 1I0S
Based on Linux kernel but modified
e Provides process, memory, device-driver management
e Adds power management

B Runtime environment includes core set of libraries and Dalvik
virtual machine

e Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

m Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

SE
o ‘i‘i‘;{'
AP0

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 2.47



y

p

N

s,

P

<557 Android Architecture

Applications

Application Framework

Libraries Android runtime
SQlLite openGL Core Libraries
surface media Dalvik
manager framework . .
virtual machine
webkit libc

Linux kernel

ot WY
- /‘%; S
4 ‘tk‘;_-f'
“ <0 g

Operating System Concepts Essentials — 24 Edition 2.48 Silberschatz, Galvin and Gagne ©2013




]

1-1:;

,r"'?"-’"?'rj

<§¥7  Operating-System Debugging

B Debugging is finding and fixing errors, or bugs
OS generate log files containing error information

Failure of an application can generate core dump file capturing
memory of the process

m Operating system failure can generate crash dump file containing
kernel memory

B Beyond crashes, performance tuning can optimize system performance
e Sometimes using trace listings of activities, recorded for analysis

e Profiling is periodic sampling of instruction pointer to look for
statistical trends

Kernighan' s Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

i > y“s“"‘; _.\;\l
o “%-(
“l 29K

Operating System Concepts Essentials — 24 Edition 2.49 Silberschatz, Galvin and Gagne ©2013




O Performance Tuning

B Improve performance by
removing bottlenecks

®m OS must provide means of CPU Usage CPU Usage Histor
computing and displaying
measures of system
behavior R
PF Usage Page File Usage History
m For example, “top” program
or Windows Task Manager
Tokals Phrysical Memary (K)
Handlzs 12621 Total 2096616
Thraads 563 Available 1391852
Processes 50 Syskem Cache 1564184
Camrmit Charge (K Kermel Memary (k)
Tatal 642128 Tiotal 118724
Lirnit 4036760 Paged SoE36
Peak 01216 Monpaged 33055
Processes; S0 CPU sage: 0% Commit Charge: 6270 [ 3942M

Operating System Concepts Essentials — 24 Edition 2.50 Silberschatz, Galvin and Gagne ©2013




| ﬁﬁ-%ll .1;‘
&Wﬂib,ru’

DTrace

m DTrace tool in Solaris,
FreeBSD, Mac OS X allows
live instrumentation on
production systems

m Probes fire when code is
executed within a provider,
capturing state data and
sending it to consumers of
those probes

m Example of following
XEventsQueued system call
move from libc library to
kernel and back

Operating System Concepts Essentials — 2" Edition

#

2.51

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION

0
0

O O OO0 O OO0 0o oo o

O OO O OO0 O OO O«

—-=> XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> loctl
-> loctl
-= getf
-> set active fd
<- gset active fd
<— getf
-> get udatamodel
<— get udatamodel

AAARAARRCOCCOCCCOad

-> releaset
-> clear active fd
<- clear_ active fd
-> cv_broadcast
<— cv_broadcast
<- releasetf
<— loctl
<— loctl
<— _XEventsQueued
<— XEventsOQueued

Cgg=®RRRR XX

Silberschatz, Galvin and Gagne ©2013



G5 Dtrace (Cont.)

m DTrace code to record

amount of time each # dtrace -s sched.d
process with UserID 101 is ’:‘icli_race: script ‘sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
: gnome-vfs-daemon 158243
in nanoseconds S i 189804
wnck-applet 200030
. gnome-panel 277864
Sehed:iionepn clock-applet 374916
'}{11 o mapping-daemon 385475
self->ts = timestamp; KSEIEE‘I‘lSa‘i.?EI‘ 514177
} metacity 539281
Xorg 2579646
sched: : :of f-cpu gnome-terminal 5007269
self->ts mixer applet2 7388447
java 10769137
@time [execname] = sum(timestamp - self->ts);
) self->ts = 0; Figure 2.21 Output of the D code.

Operating System Concepts Essentials — 2nd Edition 2.52 Silberschatz, Galvin and Gagne ©2013




i Operating System Generation

m Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

m SYSGEN program obtains information concerning the specific
configuration of the hardware system

e Used to build system-specific compiled kernel or system-
tuned

e Can general more efficient code than one general kernel

Operating System Concepts Essentials — 24 Edition 2.53 Silberschatz, Galvin and Gagne ©2013




y

-

System Boot

When power initialized on system, execution starts at a fixed
memory location

e Firmware ROM used to hold initial boot code

Operating system must be made available to hardware so hardware
can start it

e Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

e Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

Common bootstrap loader, GRUB, allows selection of kernel from
multiple disks, versions, kernel options

Kernel loads and system is then running

Operating System Concepts Essentials — 24 Edition 2.54 Silberschatz, Galvin and Gagne ©2013



End of Chapter 2

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013



	Chapter 2:  Operating-System Structures
	Chapter 2:  Operating-System Structures
	Objectives
	Operating System Services
	Operating System Services (Cont.)
	Operating System Services (Cont.)
	A View of Operating System Services
	User Operating System Interface - CLI
	Bourne Shell Command Interpreter
	User Operating System Interface - GUI
	Touchscreen Interfaces
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls
	Types of System Calls (Cont.)
	Types of System Calls (Cont.)
	Examples of Windows and  Unix System Calls
	Standard C Library Example
	Example: MS-DOS
	Example: FreeBSD
	System Programs
	System Programs
	System Programs (Cont.)
	System Programs (Cont.)
	Operating System Design and Implementation
	Operating System Design and Implementation (Cont.)
	Implementation
	Operating System Structure
	Simple Structure  -- MS-DOS
	Non Simple Structure  -- UNIX
	Traditional UNIX System Structure
	Layered Approach
	Microkernel System Structure 
	Microkernel System Structure 
	Modules
	Solaris Modular Approach
	Hybrid Systems
	Mac OS X Structure
	iOS
	Android
	Android Architecture
	Operating-System Debugging
	Performance Tuning
	DTrace
	Dtrace (Cont.)
	Operating System Generation
	System Boot
	End of Chapter 2

