
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 5: Process
Synchronization

5.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 5: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Mutex Locks
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Alternative Approaches

5.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To present the concept of process synchronization.
 To introduce the critical-section problem, whose solutions

can be used to ensure the consistency of shared data
 To present both software and hardware solutions of the

critical-section problem
 To examine several classical process-synchronization

problems
 To explore several tools that are used to solve process

synchronization problems

5.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Background

 Processes can execute concurrently
 May be interrupted at any time, partially completing

execution
 Concurrent access to shared data may result in data

inconsistency
 Maintaining data consistency requires mechanisms to ensure

the orderly execution of cooperating processes
 Illustration of the problem:

Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.

5.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Producer

while (true) {
 /* produce an item in next produced */

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

5.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Consumer

while (true) {

 while (counter == 0)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in next consumed */

}

5.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Race Condition

 counter++ could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1

 counter-- could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

 Consider this execution interleaving with “count = 5” initially:
 S0: producer execute register1 = counter {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

5.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this
 Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section

5.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Critical Section

 General structure of process Pi

5.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Algorithm for Process Pi

 do {

 while (turn == j);

 critical section

 turn = j;

 remainder section

 } while (true);

5.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

5.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Critical-Section Handling in OS

 Two approaches depending on if kernel is preemptive or non-
preemptive
 Preemptive – allows preemption of process when running

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU
Essentially free of race conditions in kernel mode

5.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Peterson’s Solution

 Good algorithmic description of solving the problem

 Two process solution

 Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:
 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

5.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Algorithm for Process Pi

 do {
 flag[i] = true;

 turn = j;

 while (flag[j] && turn = = j);

 critical section

 flag[i] = false;

 remainder section

 } while (true);

5.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Peterson’s Solution (Cont.)

 Provable that the three CS requirement are met:
 1. Mutual exclusion is preserved

 Pi enters CS only if:

 either flag[j] = false or turn = i

 2. Progress requirement is satisfied
 3. Bounded-waiting requirement is met

5.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking
 Protecting critical regions via locks

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible
 Either test memory word and set value
 Or swap contents of two memory words

5.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solution to Critical-section Problem Using Locks

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

5.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

test_and_set Instruction

 Definition:
 boolean test_and_set (boolean *target)
 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

5.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:
 do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

 } while (true);

5.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

compare_and_swap Instruction

Definition:
 int compare _and_swap(int *value, int expected, int new_value) {

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

 }

1. Executed atomically
2. Returns the original value of passed parameter “value”
3. Set the variable “value” the value of the passed parameter “new_value”

but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

5.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solution using compare_and_swap

 Shared integer “lock” initialized to 0;
 Solution:
 do {

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 } while (true);

5.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded-waiting Mutual Exclusion with test_and_set

do {
 waiting[i] = true;
 key = true;
 while (waiting[i] && key)

 key = test_and_set(&lock);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 /* remainder section */

} while (true);

5.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock
 Protect a critical section by first acquire() a lock then

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting
 This lock therefore called a spinlock

5.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

acquire() and release()

 acquire() {
 while (!available)

 ; /* busy wait */

 available = false;;

 }

 release() {

 available = true;

 }

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (true);

5.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {
 while (S <= 0)

 ; // busy wait

 S--;

}

 Definition of the signal() operation

signal(S) {
 S++;

}

5.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

 Create a semaphore “synch” initialized to 0
P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

 Can implement a counting semaphore S as a binary semaphore

5.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections
and therefore this is not a good solution

5.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the

appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue
 typedef struct{

 int value;

 struct process *list;

 } semaphore;

5.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {
 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {
 remove a process P from S->list;

 wakeup(P);

 }

}

5.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1
 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

 Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which it is

suspended
 Priority Inversion – Scheduling problem when lower-priority process

holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol

5.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

5.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

5.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

 do {

 ...
 /* produce an item in next_produced */

 ...

 wait(empty);

 wait(mutex);

 ...
 /* add next produced to the buffer */

 ...

 signal(mutex);

 signal(full);

 } while (true);

5.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 Do {

 wait(full);

 wait(mutex);

 ...
 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex);

 signal(empty);

 ...
 /* consume the item in next consumed */

 ...
 } while (true);

5.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered – all
involve some form of priorities

 Shared Data
 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

5.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

 do {

 wait(rw_mutex);

 ...
 /* writing is performed */

 ...

 signal(rw_mutex);

 } while (true);

5.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Readers-Writers Problem (Cont.)
 The structure of a reader process
 do {

 wait(mutex);
 read_count++;
 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...
 /* reading is performed */

 ...

 wait(mutex);
 read count--;
 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 } while (true);

5.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has
permission to use shared object

 Second variation – once writer is ready, it performs the
write ASAP

 Both may have starvation leading to even more variations
 Problem is solved on some systems by kernel providing

reader-writer locks

5.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating
 Don’t interact with their neighbors, occasionally try to pick up 2

chopsticks (one at a time) to eat from bowl
 Need both to eat, then release both when done

 In the case of 5 philosophers
 Shared data

 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

5.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

 What is the problem with this algorithm?

5.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling
 Allow at most 4 philosophers to be sitting

simultaneously at the table.
 Allow a philosopher to pick up the forks only if both

are available (picking must be done in a critical
section.

 Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.

5.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

 Deadlock and starvation are possible.

5.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time
 But not powerful enough to model some synchronization schemes

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }
}

5.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Schematic view of a Monitor

5.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is
suspended until x.signal()

 x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on
the variable

5.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 Monitor with Condition Variables

5.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?

 Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

 Options include
 Signal and wait – P waits until Q either leaves the monitor or it

waits for another condition
 Signal and continue – Q waits until P either leaves the monitor or it

waits for another condition
 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is
resumed

 Implemented in other languages including Mesa, C#, Java

5.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{
 enum { THINKING; HUNGRY, EATING) state [5] ;
 condition self [5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self[i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;
 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
}

5.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solution to Dining Philosophers (Cont.)

 void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;
 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }
}

5.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 Each philosopher i invokes the operations pickup() and

putdown() in the following sequence:

 DiningPhilosophers.pickup(i);

 EAT

 DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

5.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Monitor Implementation Using Semaphores

 Variables

 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next_count = 0;

 Each procedure F will be replaced by

 wait(mutex);
 …
 body of F;
 …
 if (next_count > 0)
 signal(next)
 else
 signal(mutex);

 Mutual exclusion within a monitor is ensured

5.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Monitor Implementation – Condition Variables

 For each condition variable x, we have:

 semaphore x_sem; // (initially = 0)
 int x_count = 0;

 The operation x.wait can be implemented as:

 x_count++;
 if (next_count > 0)
 signal(next);
 else
 signal(mutex);
 wait(x_sem);
 x_count--;

5.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

 if (x_count > 0) {
 next_count++;
 signal(x_sem);
 wait(next);
 next_count--;
 }

5.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Resuming Processes within a Monitor

 If several processes queued on condition x, and x.signal()
executed, which should be resumed?

 FCFS frequently not adequate
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is

scheduled next

5.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 Allocate a single resource among competing processes using

priority numbers that specify the maximum time a process
plans to use the resource

 R.acquire(t);
 ...
 access the resurce;
 ...

 R.release;

 Where R is an instance of type ResourceAllocator

Single Resource allocation

5.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator
{
 boolean busy;
 condition x;
 void acquire(int time) {
 if (busy)
 x.wait(time);
 busy = TRUE;
 }
 void release() {
 busy = FALSE;
 x.signal();
 }
initialization code() {
 busy = FALSE;
 }
}

5.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Synchronization Examples

 Solaris
 Windows
 Linux
 Pthreads

5.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris Synchronization

 Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short
code segments
 Starts as a standard semaphore spin-lock
 If lock held, and by a thread running on another CPU, spins
 If lock held by non-run-state thread, block and sleep waiting for signal of

lock being released

 Uses condition variables
 Uses readers-writers locks when longer sections of code need

access to data
 Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock
 Turnstiles are per-lock-holding-thread, not per-object

 Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

5.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Synchronization

 Uses interrupt masks to protect access to global resources on
uniprocessor systems

 Uses spinlocks on multiprocessor systems
 Spinlocking-thread will never be preempted

 Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers
 Events

 An event acts much like a condition variable
 Timers notify one or more thread when time expired
 Dispatcher objects either signaled-state (object available)

or non-signaled state (thread will block)

5.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 Atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

5.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthreads Synchronization

 Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variable

 Non-portable extensions include:
 read-write locks
 spinlocks

5.62 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages

5.63 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 A memory transaction is a sequence of read-write operations

to memory that are performed atomically.

 void update()
 {
 /* read/write memory */
 }

Transactional Memory

5.64 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 OpenMP is a set of compiler directives and API that support

parallel progamming.

 void update(int value)
 {
 #pragma omp critical
 {
 count += value
 }
 }

The code contained within the #pragma omp critical directive

is treated as a critical section and performed atomically.

OpenMP

5.65 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

 Functional programming languages offer a different paradigm

than procedural languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state
once they have been assigned a value.

 There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.

Functional Programming
Languages

5.66 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

The Deadlock Problem

 A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

 Example
 System has 2 disk drives
 P1 and P2 each hold one disk drive and each needs another one

 Example

 semaphores A and B, initialized to 1
 P0 P1

 wait (A); wait(B)
 wait (B); wait(A)

5.67 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Bridge Crossing Example

 Traffic only in one direction
 Each section of a bridge can be viewed as a resource
 If a deadlock occurs, it can be resolved if one car backs up

(preempt resources and rollback)
 Several cars may have to be backed up if a deadlock occurs
 Starvation is possible
 Note – Most OSes do not prevent or deal with deadlocks

5.68 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)
{

 pthread_mutex_lock(&first_mutex);

 pthread_mutex_lock(&second_mutex);

 /** * Do some work */
 pthread_mutex_unlock(&second_mutex);

 pthread_mutex_unlock(&first_mutex);

 pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

 pthread_mutex_lock(&second_mutex);

 pthread_mutex_lock(&first_mutex);

 /** * Do some work */
 pthread_mutex_unlock(&first_mutex);

 pthread_mutex_unlock(&second_mutex);

 pthread_exit(0);

}

5.69 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

 mutex lock1, lock2;

 lock1 = get_lock(from);

 lock2 = get_lock(to);

 acquire(lock1);

 acquire(lock2);

 withdraw(from, amount);

 deposit(to, amount);

 release(lock2);

 release(lock1);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25
from account A to account B, and Transaction 2 transfers $50 from account
B to account A

5.70 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

 No preemption: a resource can be released only voluntarily
by the process holding it, after that process has completed
its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by P2, …, Pn–1
is waiting for a resource that is held by Pn, and Pn is waiting
for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

5.71 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Resource-Allocation Graph

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system

 request edge – directed edge Pi → Rj

 assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

5.72 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi
Rj

Rj

5.73 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of a Resource Allocation Graph

5.74 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Resource Allocation Graph With A Deadlock

5.75 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Graph With A Cycle But No Deadlock

5.76 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Basic Facts

 If graph contains no cycles ⇒ no deadlock
 If graph contains a cycle ⇒

 if only one instance per resource type, then deadlock
 if several instances per resource type, possibility of

deadlock

5.77 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock
state:
 Deadlock prevention
 Deadlock avoidence

 Allow the system to enter a deadlock state and then
recover

 Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 5

	Chapter 5: Process Synchronization
	Chapter 5: Process Synchronization
	Objectives
	Background
	Producer
	Consumer
	Race Condition
	Critical Section Problem
	Critical Section
	Algorithm for Process Pi
	Solution to Critical-Section Problem
	Critical-Section Handling in OS
	Peterson’s Solution
	Algorithm for Process Pi
	Peterson’s Solution (Cont.)
	Synchronization Hardware
	Solution to Critical-section Problem Using Locks
	test_and_set Instruction
	Solution using test_and_set()
	compare_and_swap Instruction
	Solution using compare_and_swap
	Bounded-waiting Mutual Exclusion with test_and_set
	Mutex Locks
	acquire() and release()
	Semaphore
	Semaphore Usage
	Semaphore Implementation
	Semaphore Implementation with no Busy waiting
	Implementation with no Busy waiting (Cont.)
	Deadlock and Starvation
	Classical Problems of Synchronization
	Bounded-Buffer Problem
	Bounded Buffer Problem (Cont.)
	Bounded Buffer Problem (Cont.)
	Readers-Writers Problem
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem (Cont.)
	Readers-Writers Problem Variations
	Dining-Philosophers Problem
	 Dining-Philosophers Problem Algorithm
	Dining-Philosophers Problem Algorithm (Cont.)
	Problems with Semaphores
	Monitors
	Schematic view of a Monitor
	Condition Variables
	 Monitor with Condition Variables
	Condition Variables Choices
	Monitor Solution to Dining Philosophers
	Solution to Dining Philosophers (Cont.)
	Slide Number 50
	Monitor Implementation Using Semaphores
	Monitor Implementation – Condition Variables
	Monitor Implementation (Cont.)
	Resuming Processes within a Monitor
	Slide Number 55
	A Monitor to Allocate Single Resource
	Synchronization Examples
	Solaris Synchronization
	Windows Synchronization
	Linux Synchronization
	Pthreads Synchronization
	Alternative Approaches
	Slide Number 63
	Slide Number 64
	Slide Number 65
	The Deadlock Problem
	Bridge Crossing Example
	Deadlock Example
	Deadlock Example with Lock Ordering
	Deadlock Characterization
	Resource-Allocation Graph
	Resource-Allocation Graph (Cont.)
	Example of a Resource Allocation Graph
	Resource Allocation Graph With A Deadlock
	Graph With A Cycle But No Deadlock
	Basic Facts
	Methods for Handling Deadlocks
	End of Chapter 5

