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S Objectives

B To present the concept of process synchronization.

® To introduce the critical-section problem, whose solutions
can be used to ensure the consistency of shared data

B To present both software and hardware solutions of the
critical-section problem

B To examine several classical process-synchronization
problems

B To explore several tools that are used to solve process
synchronization problems
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g Background

® Processes can execute concurrently

e May be interrupted at any time, partially completing
execution

m Concurrent access to shared data may result in data
inconsistency

B Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

m [llustration of the problem:
Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We can
do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is setto 0. It is
incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a
buffer.
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-7 Producer

i

while (true) {
/* produce an i1tem in next produced */

while (counter == BUFFER_SIZE) ;
/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;
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Oy Consumer

while (true) {
while (counter == 0)
; /* do nothing */
next consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in next consumed */
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g.;;:‘ﬁ Race Condition

B counter++ could be implemented as

registerl counter
registerl registerl + 1
counter = registerl

B counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

m Consider this execution interleaving with “count = 5” initially:

SO: producer execute registerl counter
S1: producer execute registerl registerl + 1
S2: consumer execute register2 = counter

{registerl = 5}
{registerl = 6}

{register2 = 5}

S3: consumer execute register?2 = register2 — 1 {reqister2 = 4}

S4: producer execute counter = registerl
S5: consumer execute counter = register?2

{counter =6}

{counter = 4}

.....
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S Critical Section Problem

m Consider system of n processes {py, Py, --- Pn.1t
m Each process has critical section segment of code

e Process may be changing common variables, updating
table, writing file, etc

e When one process in critical section, no other may be in its
critical section

m Critical section problem is to design protocol to solve this

B Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

Silberschatz, Galvin and Gagne ©2013
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@),5 Critical Section

B General structure of process P,

do {

entry section

critical section

exit section

remainder section

} while (true);

Al
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- Algorithm for Process P,

while (turn == j);

critical section
turn = j;

remainder section
} while (true);

“
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w Solution to Critical-Section Problem

1. Mutual Exclusion - If process P; is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted

® Assume that each process executes at a nonzero speed

® No assumption concerning relative speed of the n
processes
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> Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or non-
preemptive
® Preemptive — allows preemption of process when running
in kernel mode
® Non-preemptive — runs until exits kernel mode, blocks, or
voluntarily yields CPU

» Essentially free of race conditions in kernel mode

Silberschatz, Galvin and Gagne ©2013
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S Peterson’s Solution
m  Good algorithmic description of solving the problem
Two process solution
Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted
® The two processes share two variables:
e Int turn;
e Boolean flag[2]
® The variable turn indicates whose turn it is to enter the critical
section
m The flag array is used to indicate if a process is ready to enter

Operating System

the critical section. flag[i] = true implies that process P; is
ready!
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e Algorithm for Process P,

do {
flag[i1] = true;
turn = j;
while (flag[j] && turn = = j);
critical section
flag[1] = false;
remainder section
} while (true);
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ot Peterson’s Solution (Cont.)

® Provable that the three CS requirement are met:
1. Mutual exclusion is preserved
P; enters CS only if:
either flag[j] = false or turn = 1
2. Progress requirement is satisfied
3. Bounded-waiting requirement is met
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‘*v’ Synchronization Hardware

B Many systems provide hardware support for implementing the
critical section code.

m All solutions below based on idea of locking
e Protecting critical regions via locks

® Uniprocessors — could disable interrupts
e Currently running code would execute without preemption

e Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
® Modern machines provide special atomic hardware instructions
» Atomic = non-interruptible
e Either test memory word and set value
e Or swap contents of two memory words
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&"‘7’5}".’ Solution to Critical-section Problem Using Locks

do {
acquire lock
critical section
release lock
remainder section
} while (TRUE);

“
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s Ll test and set Instruction
Definition:
boolean test _and set (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE".
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%7  Solution using test_and_set()

B Shared Boolean variable lock, initialized to FALSE
m Solution:

do {
while (test_and set(&lock))

; /* do nothing */
/* critical section */
lock = false;
/* remainder section */

} while (true);
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“#7/  compare_and_swap Instruction

Definition:
int compare _and swap(int *value, Int expected, iInt new value) {

int temp = *value;

it (*value == expected)
*value = new value;
return temp;
+
Executed atomically

Returns the original value of passed parameter “value”

Set the variable “value” the value of the passed parameter “new_value”
but only if “value” ==“expected”. That is, the swap takes place only under

this condition.
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<%/ Solution using compare_and_swap

B Shared integer “lock” initialized to O;
m  Solution:

do {
while (compare_and swap(&lock, 0, 1) = 0)

; /* do nothing */
/* critical section */
lock = 0;
/* remainder section */
} while (true);
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&wf;;-( Bounded-waiting Mutual Exclusion with test_and_set

do {
waiting[i] = true;
key = true;

whille (warting[i1] && key)
key = test _and _set(&lock);

waiting[i] = false;

/* critical section */

J =@ +1)%n;

while (( '= 1) && 'waiting[j])
1=0 +1) %n;

ifTg=1
lock = false;

else
waiting[j] = false;

/* remainder section */

} while (true);
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G Mutex Locks

® Previous solutions are complicated and generally inaccessible
to application programmers

m OS designers build software tools to solve critical section
problem

Simplest is mutex lock

Protect a critical section by first acquire() a lock then
release() the lock

e Boolean variable indicating if lock is available or not
m Callstoacquire() and release() must be atomic
e Usually implemented via hardware atomic instructions
®m But this solution requires busy waiting
m  This lock therefore called a spinlock
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m’;-"‘ﬁ acquire() and release()

m acquire( {
while (lavailable)

; /* busy wait */
available = fTalse;;
}
O release() {
available = true;
+
L do {
acquire lock
critical section
release lock
remainder section
} while (true);
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g7 Semaphore

®  Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

m  Semaphore S — integer variable
m Can only be accessed via two indivisible (atomic) operations
e wait() andsignal()
» Originally called P() and V()
m Definition of the wait() operation
walt(S) {
while (S <= 0)
. // busy wait
S--3
by
m Definition of the signal () operation

signal(S) {

S++:

}

Operating System Concepts Essentials — 2"d Edition 5.25 Silberschatz, Galvin and Gagne ©2013




A

«

S

P Semaphore Usage

&

m Counting semaphore — integer value can range over an unrestricted
domain

m Binary semaphore — integer value can range only between 0 and 1
e Same as a mutex lock
Can solve various synchronization problems
m Consider P, and P, that require S, to happen before S,
Create a semaphore “synch” initialized to 0
P1:
Si;
signal (synch);
P2:
wairt(synch);
S,;
m Can implement a counting semaphore S as a binary semaphore

Silberschatz, Galvin and Gagne ©2013
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4%’  Semaphore Implementation

®m Must guarantee that no two processes can execute the wait()
and signal () on the same semaphore at the same time

® Thus, the implementation becomes the critical section problem
where the walt and signal code are placed in the critical
section

e Could now have busy waiting in critical section
implementation

» But implementation code is short
» Little busy waiting if critical section rarely occupied

® Note that applications may spend lots of time in critical sections
and therefore this is not a good solution
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%7 Semaphore Implementation with no Busy waiting

ot

m With each semaphore there is an associated waiting queue
m Each entry in a waiting queue has two data items:

e value (of type integer)

e pointer to next record in the list
® Two operations:

e block — place the process invoking the operation on the
appropriate waiting queue

e wakeup — remove one of processes in the waiting queue
and place it in the ready queue
m typedef struct{
int value;
struct process *list;

} semaphore;

-
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&n-rg;—{ Implementation with no Busy waiting (Cont.)

wart(semaphore *S) {
S->value--;

iIT (S->value < 0) {
add this process to S->list;

block();

signal (semaphore *S) {
S->value++;

iIT (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

Operating System Concepts Essentials — 2" Edition 5.29
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gF Deadlock and Starvation

m Deadlock —two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

B LetSand Q be two semaphores initialized to 1

P, P,
wait(S); wait(Q);
wait(Q); wart(S);
signal(S); signal(Q);
signal (Q); signal(S);

m Starvation — indefinite blocking
e A process may never be removed from the semaphore queue in which it is
suspended
m Priority Inversion — Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

e Solved via priority-inheritance protocol

Silberschatz, Galvin and Gagne ©2013
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m Classical problems used to test newly-proposed synchronization
schemes

e Bounded-Buffer Problem
e Readers and Writers Problem
e Dining-Philosophers Problem

oLy
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r o Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutexX initialized to the value 1

Semaphore Tul I initialized to the value 0

Semaphore empty initialized to the value n
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m‘:’—?*f Bounded Buffer Problem (Cont.)

® The structure of the producer process
do {

/* produce an item in next _produced */

wart(empty);
wart(mutex) ;

/* add next produced to the buffer */

signal (mutex);
signal (full);
} while (true);
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4%’ Bounded Buffer Problem (Cont.)

® The structure of the consumer process

Do {
wart(full);
wart(mutex) ;

/* remove an item from buffer to next consumed */

signhal(mutex);
signhal (empty);

/* consume the 1tem In next consumed */

} while (true);
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S5 Readers-Writers Problem

B A data set is shared among a number of concurrent processes
e Readers — only read the data set; they do not perform any updates
e Writers — can both read and write

® Problem — allow multiple readers to read at the same time
e Only one single writer can access the shared data at the same time

m Several variations of how readers and writers are considered — all
involve some form of priorities

m Shared Data
e Data set
e Semaphore rw_mutex initialized to 1

e Semaphore mutex initialized to 1

e Integer read count initialized to 0
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~“$»/ Readers-Writers Problem (Cont.)

® The structure of a writer process

do {
wart(rw_mutex);

/* writing is performed */

signal (rw_mutex);
} while (true);
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~$»7 Readers-Writers Problem (Cont.)

®m The structure of a reader process

do {
waitt(mutex) ;
read count++;
iIT (read count == 1)

wart(rw_mutex);
signhal (mutex) ;

/* reading is performed */

waitt(mutex) ;
read count--;
iIT (read count == 0)

signal(rw_mutex);
signhal (mutex) ;
} while (true);
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«$%7 Readers-Writers Problem Variations

m First variation — no reader kept waiting unless writer has
permission to use shared object

B Second variation — once writer is ready, it performs the
write ASAP

Both may have starvation leading to even more variations

Problem is solved on some systems by kernel providing
reader-writer locks
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«§%’  Dining-Philosophers Problem

&

® Philosophers spend their lives alternating thinking and eating

® Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

e Need both to eat, then release both when done
® In the case of 5 philosophers
e Shared data
» Bowl of rice (data set)
» Semaphore chopstick [5] initialized to 1
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m:—"‘i “ Dining-Philosophers Problem Algorithm

m The structure of Philosopher i:
do {
wait (chopstick[i] );
wait (chopStick[ (i + 1) % 5] );

// eat

signal (chopstick[i] );
signal (chopstick[ (1 + 1) % 5] );

// think

} while (TRUE);
®m  What is the problem with this algorithm?

\
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.“—/ Dining-Philosophers Problem Algorithm (Cont.)

m Deadlock handling

e Allow at most 4 philosophers to be sitting
simultaneously at the table.

e Allow a philosopher to pick up the forks only if both
are available (picking must be done in a critical
section.

e Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.
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gt Problems with Semaphores

® Incorrect use of semaphore operations:
e signal (mutex) .... wait (mutex)

e wait (mutex) ... wait (mutex)

e Omitting of wait (mutex) or signal (mutex) (or both)

m Deadlock and starvation are possible.
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G Monitors

® A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

m Abstract data type, internal variables only accessible by code within the
procedure

®  Only one process may be active within the monitor at a time
m  But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations
procedure P1 (.) { .- }

procedure Pn (.) {..}

Initialization code (.) { .. }

}
}
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ot Schematic view of a Monitor

entry queue

shared data

~

operations
initialization
code
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g Condition Variables

m condition X, VY;
® Two operations are allowed on a condition variable:

e X.walt() - aprocess that invokes the operation is
suspended until Xx.signal ()

e X.signal() -resumes one of processes (if any) that
invoked X .wait()

» If no X.wairt() on the variable, then it has no effect on
the variable
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4% Monitor with Condition Variables

entry queue

shared data

queues associated with

x, y conditions y ~EER

~

operations

initialization
code

“
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-7 Condition Variables Choices

m If process P invokes X.signhal (), and process Q is suspended in
x.wairt(), what should happen next?

e Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

m Options include

e Signal and wait — P waits until Q either leaves the monitor or it
waits for another condition

e Signal and continue — Q waits until P either leaves the monitor or it
waits for another condition

e Both have pros and cons — language implementer can decide
e Monitors implemented in Concurrent Pascal compromise

» P executing signal immediately leaves the monitor, Q is
resumed

e Implemented in other languages including Mesa, C#, Java
"‘5; =

i
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5]
condition self [5];

void pickup (int 1) {
state[1] = HUNGRY;
test(1);
iIT (state[1] !'= EATING) self[i]-wailt;

void putdown (int 1) {
state[1] = THINKING;
// test left and right neighbors
test((1 + 4) % 5);
test((i + 1) % 5);
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H’J—"i Solution to Dining Philosophers (Cont.)

4

void test (int 1) {
IT ((state[ (1 + 4) % 5] "= EATING) &&
(state[1] == HUNGRY) &&
(state[(1 + 1) % 5] 1= EATING) ) {
state[1] = EATING ;
self[1].signal QO ;
+

initialization _code() {
for (int i = 0; 1 < 5; i++)
state[1] = THINKING;

s
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snr;‘;"f}@Solution to Dining Philosophers (Cont.)

®m Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);
EAT
DiningPhilosophers.putdown(i);

B No deadlock, but starvation is possible
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‘?3“:—"3’ Monitor Implementation Using Semaphores

®m Variables
semaphore mutex; // (initially = 1)
semaphore next; // (iIn ially = 0)

int next_count = O;
m Each procedure F will be replaced by
wart(mutex);
body of F;
iIT (next _count > 0)
signal (next)
else

sighal (mutex);

® Mutual exclusion within a monitor is ensured
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@ﬁfss,rf Monitor Implementation — Condition Variables

B For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = O;

® The operation x.wait can be implemented as:

X_count++;
1T (next _count > 0)
signal (next);
else
signal (mutex) ;
wartt(x_sem);
X_count--;
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g%  Monitor Implementation (Cont.)

® The operation x.signal can be implemented as:

iIf (X count > 0) {
next_count++;
signal (x_sem);
wait(next);
next_count--;

Silberschatz, Galvin and Gagne ©2013
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‘?:{:ﬁ Resuming Processes within a Monitor

m |f several processes queued on condition x, and x.signal()
executed, which should be resumed?

FCFS frequently not adequate
conditional-wait construct of the form x.wait(c)
e Where cis priority number

e Process with lowest number (highest priority) is
scheduled next
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G Single Resource allocation

m Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);

access the resurce;

.release;

m Where R is an instance of type ResourceAllocator
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=$»/ A Monitor to Allocate Single Resource

monitor ResourceAllocator
{
boolean busy;
condition X;
void acquire(int time) {
1T (busy)
x.wart(time);
busy = TRUE;
ks
void release() {
busy = FALSE;
x.signal(Q);
ks
initialization code() {
busy = FALSE;

}
}
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r o Synchronization Examples

Solaris
Windows
Linux
Pthreads

A X
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. L Solaris Synchronization

m Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

m Uses adaptive mutexes for efficiency when protecting data from short
code segments
e Starts as a standard semaphore spin-lock
e If lock held, and by a thread running on another CPU, spins

e If lock held by non-run-state thread, block and sleep waiting for signal of
lock being released

Uses condition variables

Uses readers-writers locks when longer sections of code need
access to data

m Uses turnstiles to order the list of threads waiting to acquire either an
adaptive mutex or reader-writer lock

e Turnstiles are per-lock-holding-thread, not per-object

®m Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile
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S Windows Synchronization

'

B Uses interrupt masks to protect access to global resources on
uniprocessor systems

m Uses spinlocks on multiprocessor systems
e Spinlocking-thread will never be preempted

m Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers

e Events
» An event acts much like a condition variable
e Timers notify one or more thread when time expired

e Dispatcher objects either signaled-state (object available)
or non-signaled state (thread will block)
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S Linux Synchronization

4

B Linux;

e Prior to kernel Version 2.6, disables interrupts to
iImplement short critical sections

e Version 2.6 and later, fully preemptive
® Linux provides:

e Semaphores

e Atomic integers

e spinlocks

e reader-writer versions of both

® On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption
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Pthreads Synchronization

m Pthreads API is OS-independent
®m |t provides:
e mutex locks
e condition variable
® Non-portable extensions include:
e read-write locks
e spinlocks
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L Alternative Approaches

® Transactional Memory

®m OpenMP

® Functional Programming Languages

“

Operating System Concepts Essentials — 2" Edition 5.62 Silberschatz, Galvin and Gagne ©2013




GF Transactional Memory

B A memory transaction is a sequence of read-write operations
to memory that are performed atomically.

void update()
{

/* read/write memory */

}
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g OpenMP

m OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)

‘ #pragma omp critical
{
count += value
by
by

The code contained within the #pragma omp critical directive
IS treated as a critical section and performed atomically.
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Functional Programming
Languages

®  Functional programming languages offer a different paradigm
than procedural languages in that they do not maintain state.

m Variables are treated as immutable and cannot change state
once they have been assigned a value.

® There is increasing interest in functional languages such as
Erlang and Scala for their approach in handling data races.
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r o The Deadlock Problem

m A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

m Example
e System has 2 disk drives

e P, and P, each hold one disk drive and each needs another one

m Example

e semaphores A and B, initialized to 1

PO Pl
wait (A); wait(B)
walit (B); wait(A)
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S5 Bridge Crossing Example

Traffic only in one direction
Each section of a bridge can be viewed as a resource

m If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

m Several cars may have to be backed up if a deadlock occurs
Starvation is possible

Note — Most OSes do not prevent or deal with deadlocks
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) Deadlock Example

s,

/* thread one runs in this function */

void *do_work one(void *param)
{
pthread mutex_ lock(&fFirst_mutex);

pthread mutex lock(&second mutex);

/** * Do some work */
pthread mutex_unlock(&second mutex) ;

pthread mutex_unlock(&fFirst_mutex);
pthread exit(0);

¥

/* thread two runs in this function */

void *do_work two(void *param)
{
pthread mutex_lock(&second _mutex);

pthread_mutex_lock(&First_mutex);

/** * Do some work */
pthread mutex_unlock(&fFirst_mutex);

pthread mutex unlock(&second mutex);
pthread exit(0);
¥
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sn::;;‘i “ Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)
{
mutex lockl, lock2;
lockl = get lock(from);
lock2 = get lock(to);
acquire(lockl);
acquire(lock?2);
withdraw(from, amount);
deposit(to, amount);
release(lock2);
release(lockl);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25
from account A to account B, and Transaction 2 transfers $50 from account
B to account A
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S Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

m Mutual exclusion: only one process at a time can use a
resource

m Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

m No preemption: aresource can be released only voluntarily
by the process holding it, after that process has completed
its task

m Circular wait: there exists a set {P,, P, ..., P,} of waiting
processes such that P, is waiting for a resource that is held
by P,, P, is waiting for a resource that is held by P,, ..., P,_;
IS waiting for a resource that is held by P, and P, is waiting
for a resource that is held by P.
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r o Resource-Allocation Graph

A set of vertices V and a set of edges E.

®m Vs partitioned into two types:

e P={P,, P, ..., P}, the set consisting of all the processes
in the system

e R={R;,R,, ..., R}, the set consisting of all resource
types in the system

m request edge —directed edge P;— R,

m assignment edge — directed edge R; — P,

X '\.‘l";\
\tt
A Agx ™
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&u-:f;,( Resource-Allocation Graph (Cont.)

O

® Resource Type with 4 instances

®m Process

0o
0o

® P, requests instance of R,

® P;is holding an instance of R

oo
oo

b
oo

Py,
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gy’ Example of a Resource Allocation Graph

R1 RS

e ]
@

R, .
R,

“
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‘mfgyj Resource Allocation Graph With A Deadlock

R 1 RB
@ ®
\ \
/
®
@ L ]
O
R, ®
Ry

“
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m‘i—‘ﬁ Graph With A Cycle But No Deadlock

“
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G Basic Facts

iy

m |f graph contains no cycles = no deadlock
m |f graph contains a cycle =
e if only one instance per resource type, then deadlock

e if several instances per resource type, possibility of
deadlock
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~%»/ Methods for Handling Deadlocks

® Ensure that the system will never enter a deadlock
state:

e Deadlock prevention
e Deadlock avoidence

m Allow the system to enter a deadlock state and then
recover

®m [gnore the problem and pretend that deadlocks never
occur in the system; used by most operating systems,
including UNIX
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End of Chapter 5
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