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gF Objectives

m Discuss the goals and principles of protection in a modern
computer system

m Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

B Examine capability and language-based protection systems
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"G F Goals of Protection

® In one protection model, computer consists of a collection of
objects, hardware or software

m Each object has a unigue name and can be accessed through
a well-defined set of operations

® Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so
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ﬂ%;’"“* Principles of Protection

®  Guiding principle — principle of least privilege

e Programs, users and systems should be given just
enough privileges to perform their tasks

e Limits damage if entity has a bug, gets abused

e Can be static (during life of system, during life of
process)

e Or dynamic (changed by process as needed) — domain
switching, privilege escalation

e “Need to know” a similar concept regarding access to
data
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Principles of Protection (Cont.)

m Must consider “grain” aspect

e Rough-grained privilege management easier, simpler,
but least privilege now done in large chunks

» For example, traditional Unix processes either have
abilities of the associated user, or of root

e Fine-grained management more complex, more
overhead, but more protective

» File ACL lists, RBAC
® Domain can be user, process, procedure
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G Domain Structure

m Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

®m Domain = set of access-rights

< O, {read, write} >
< Oy, {read, write} >
< O,, {execute} >
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,;;:.i Domain Implementation (UNIX)

®m Domain = user-id
® Domain switch accomplished via file system
» Each file has associated with it a domain bit (setuid bit)

» When file is executed and setuid = on, then user-id is
set to owner of the file being executed

» When execution completes user-id is reset
® Domain switch accomplished via passwords

e su command temporarily switches to another user’ s
domain when other domain’ s password provided

® Domain switching via commands

e sudo command prefix executes specified command in
another domain (if original domain has privilege or
password given)
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%  Domain Implementation (MULTICS)

m Let D;and D;be any two domain rings
m Ifj<l=D; D,

ring O

ring 1

ring N—1
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S S Multics Benefits and Limits

B Ring / hierarchical structure provided more than the basic
kernel / user or root / normal user design

Fairly complex -> more overhead
But does not allow strict need-to-know
e Object accessible in D; but not in D;, then j must be <

e But then every segment accessible in D, also
accessible in D;
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G5 Access Matrix

View protection as a matrix (access matrix)
Rows represent domains
Columns represent objects

Access(i1, J) isthe set of operations that a process
executing in Domain; can invoke on Object,

object
_ F, Fs F; printer
domain
D, read read
D, print
D, read execute
D read read
4 write write
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. L Use of Access Matrix

® If a process in Domain D; tries to do “op” on object O,, then
“op” must be in the access matrix

m User who creates object can define access column for that
object

m Can be expanded to dynamic protection

e OQOperations to add, delete access rights

e Special access rights:
» owner of O,
» copy op from O; to O, (denoted by ™)
» control — D; can modify D; access rights
» transfer — switch from domain D; to D;

e Copy and Owner applicable to an object

e Control applicable to domain object
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G Use of Access Matrix (Cont.)

B Access matrix design separates mechanism from policy
e Mechanism
» Operating system provides access-matrix + rules

» If ensures that the matrix is only manipulated by
authorized agents and that rules are strictly enforced

e Policy
» User dictates policy
» Who can access what object and in what mode
m But doesn’ t solve the general confinement problem
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Access Matrix of Figure A with Domains as Objects

object
£ £ E laser D. D, D, D,
domain printer
D, read read switch
D, print switch | switch
D, read |execute
D rea_ld rea_ld switeh
4 write write
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Access Matrix with Copy Rights

object
F F, Fs
domain
D, execute write*
D, execute read” execute
D, execute
(a)
object
F, F, Fy
domain
D, execute write*
D, execute read” execute
D, execute read
(b)
13.15
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f«w—/ Access Matrix With Owner Rights

object
F F, F
domain

D owner .
! execute write
- read™
0 pad | oune
write

D, execute
(a)
object
_ F F; F;
domain

D owner ,
! execute write
owner read™
D, read* owner
write* write
D, write write

(b}
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{Jﬁ Modified Access Matrix of Figure B

object
: E |l el & |2 b | B, | B, | B
domain printer
D, read read switch
. . switch

D, print switch | 20
D, read |execute
D, write write switch
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J—/ Implementation of Access Matrix

m Generally, a sparse matrix
m Option 1 — Global table

e Store ordered triples <domain, object,
rights-set> intable

e Arequested operation M on object O; within domain
D; -> search table for < D;, O;, R >

» with M € R,
e But table could be large -> won’ t fit in main memory

e Difficult to group objects (consider an object that all
domains can read)
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«$»’ Implementation of Access Matrix (Cont.)

4

m Option 2 — Access lists for objects

e Each column implemented as an access list for one
object

e Resulting per-object list consists of ordered pairs
<domain, rights-set> defining all domains with

non-empty set of access rights for the object

e Easily extended to contain default set -> If M € default
set, also allow access
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«§% Implementation of Access Matrix (Cont.)

B Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

m Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 — Read
Object F4 — Read, Write, Execute
Object F5 — Read, Write, Delete, Copy
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«$»/ Implementation of Access Matrix (Cont.)

m  Option 3 — Capability list for domains
e Instead of object-based, list is domain based

e Capability list for domain is list of objects together with operations
allows on them

e Object represented by its name or address, called a capability

e Execute operation M on object O;, process requests operation and
specifies capability as parameter

» Possession of capability means access is allowed

e Capability list associated with domain but never directly accessible
by domain

» Rather, protected object, maintained by OS and accessed
indirectly

» Like a “secure pointer”
» Idea can be extended up to applications
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“3”" Implementation of Access Matrix (Cont.)

m Option 4 — Lock-key
e Compromise between access lists and capability lists
e Each object has list of unique bit patterns, called locks
e Each domain as list of unique bit patterns called keys

e Process in a domain can only access object if domain
has key that matches one of the locks
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7 Comparison of Implementations

® Many trade-offs to consider
e Global table is simple, but can be large
e Access lists correspond to needs of users

» Determining set of access rights for domain non-
localized so difficult

» Every access to an object must be checked
Many objects and access rights -> slow

e Capalbility lists useful for localizing information for a given
process

» But revocation capabilities can be inefficient

e Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

SE
. ﬂ"%;; _\\\1
. ). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 13.23 Silberschatz, Galvin and Gagne ©2013



«$»/ Comparison of Implementations (Cont.)

m Most systems use combination of access lists and
capabilities

e First access to an object -> access list searched

» If allowed, capability created and attached to
process

Additional accesses need not be checked
» After last access, capability destroyed
» Consider file system with ACLs per file
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P Access Control

®m Protection can be applied to non-file

resources user 1
m Oracle Solaris 10 provides role- role 1
based access control (RBAC) to privileges 1

implement least privilege privileges 2

e Privilege is right to execute
system call or use an option |

within a system call executes with role 1 privileges
e Can be assigned to processes l

e Users assigned roles granting
access to privileges and
programs

» Enable role via password to
gain its privileges

e Similar to access matrix

Silberschatz, Galvin and Gagne ©2013
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g7 Revocation of Access Rights

®m Various options to remove the access right of a domain to an
object

e Immediate vs. delayed
e Selective vs. general
e Partial vs. total
e Temporary vs. permanent
m Access List — Delete access rights from access list
e Simple — search access list and remove entry

e Immediate, general or selective, total or partial,
permanent or temporary
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=437  Revocation of Access Rights (Cont.)

m Capability List — Scheme required to locate capability in the
system before capability can be revoked

e Reacquisition — periodic delete, with require and denial if
revoked

e Back-pointers — set of pointers from each object to all
capabilities of that object (Multics)

e Indirection — capability points to global table entry which points
to object — delete entry from global table, not selective (CAL)

e Keys — unique bits associated with capability, generated when
capability created

» Master key associated with object, key matches master key
for access

» Revocation — create new master key

» Policy decision of who can create and modify keys — object
owner or others?
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g7 Capability-Based Systems

® Hydra
e Fixed set of access rights known to and interpreted by the system
» i.e. read, write, or execute each memory segment

» User can declare other auxiliary rights and register those with
protection system

» Accessing process must hold capability and know name of
operation

» Rights amplification allowed by trustworthy procedures for a
specific type

e |Interpretation of user-defined rights performed solely by user's
program; system provides access protection for use of these rights

e Operations on objects defined procedurally — procedures are
objects accessed indirectly by capabilities

e Solves the problem of mutually suspicious subsystems
e Includes library of prewritten security routines

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 13.28



«¢¥7  Capability-Based Systems (Cont.)

m Cambridge CAP System
e Simpler but powerful

e Data capability - provides standard read, write, execute
of individual storage segments associated with object —
implemented in microcode

e Software capability -interpretation left to the
subsystem, through its protected procedures

» Only has access to its own subsystem

» Programmers must learn principles and techniques
of protection
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o Language-Based Protection

m Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

B Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

m [nterpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system
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V Protection in Java 2

Protection is handled by the Java Virtual Machine (JVM)

A class is assigned a protection domain when it is loaded by
the JVM

m The protection domain indicates what operations the class
can (and cannot) perform

m [f alibrary method is invoked that performs a privileged
operation, the stack is inspected to ensure the operation can
be performed by the library

m Generally, Java’'s load-time and run-time checks enforce type
safety

m Classes effectively encapsulate and protect data and
methods from other classes
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T Stack Inspection

tecti .

g(r)omzﬁr:?n ;Bglﬁted URL loader networking

socket . " .80 ¢

permission: none .lucent.com:80, connec any

class: gui: get(URL u): open(Addr a):
get(url); doPrivileged { checkPermission
open(addr); open(‘proxy.lucent.com:80’); (a, connect);
" } connect (a);

<request u from proxy=> .

“
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End of Chapter 13
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