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o Objectives

® To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

® To describe the various features of processes, including
scheduling, creation and termination, and communication

m To explore interprocess communication using shared memory
and message passing

B To describe communication in client-server systems
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g5 Process Concept

B An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
m Textbook uses the terms job and process almost interchangeably

B Process — a program in execution; process execution must
progress in sequential fashion

m  Multiple parts
e The program code, also called text section

e Current activity including program counter, processor
registers

e Stack containing temporary data
» Function parameters, return addresses, local variables
e Data section containing global variables

e Heap containing memory dynamically allocated during run time
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G Process Concept (Cont.)

® Program is passive entity stored on disk (executable file),
process is active

e Program becomes process when executable file loaded into
memory

m Execution of program started via GUI mouse clicks, command
line entry of its name, etc

® One program can be several processes
e Consider multiple users executing the same program
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G Process in Memory
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i Process State

m As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution
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N Diagram of Process State
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Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state — running, waiting, etc

Program counter — location of
instruction to next execute

CPU registers — contents of all process-
centric registers

CPU scheduling information- priorities,
scheduling queue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start, time
limits

I/O status information — 1/O devices
allocated to process, list of open files
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process P, operating system process P,

interrupt or system call
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P hreads

B So far, process has a single thread of execution
m Consider having multiple program counters per process
e Multiple locations can execute at once
» Multiple threads of control -> threads

® Must then have storage for thread details, multiple program
counters in PCB

m See next chapter
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Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list _head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */
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struct task_struct
process information

struct task_struct
process information

struct task_struct
process information
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{(currently executing proccess)
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(P> Process Scheduling

®m Maximize CPU use, quickly switch processes onto CPU for
time sharing

m Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
e Job queue — set of all processes in the system

e Ready gueue — set of all processes residing in main
memory, ready and waiting to execute

e Device queues — set of processes waiting for an 1/0O device
e Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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«$»7  Representation of Process Scheduling

4

®m Queueing diagram represents queues, resources, flows

_i ready queue CPU >
/O queue  *—— /O request [——
time slice E
expired
child fork a
@i child ‘
interrupt wait for an
OCCUrs interrupt
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m Short-term scheduler (or CPU scheduler) — selects which process should
be executed next and allocates CPU

e Sometimes the only scheduler in a system

e Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

m Long-term scheduler (or job scheduler) — selects which processes should
be brought into the ready queue

e Long-term scheduler is invoked infrequently (seconds, minutes) =
(may be slow)

e The long-term scheduler controls the degree of multiprogramming
® Processes can be described as either:

e |/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

e CPU-bound process — spends more time doing computations; few very
long CPU bursts

B Long-term scheduler strives for good process mix
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S ~ Addition of Medium Term Scheduling

®m  Medium-term scheduler can be added if degree of multiple

programming needs to decrease

e Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

swap in partially executed

swapped-out processes

swap out

» ready queue

@} » end

I/O waiting
queues
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o Multitasking in Mobile Systems

® Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

B Due to screen real estate, user interface limits iOS provides for a
e Single foreground process- controlled via user interface

e Multiple background processes— in memory, running, but not
on the display, and with limits

e Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

® Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks

e Service can keep running even if background process is
suspended

e Service has no user interface, small memory use
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ST Context Switch

®m When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

m Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful
work while switching

e The more complex the OS and the PCB = the longer the
context switch

® Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU
=> multiple contexts loaded at once
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o Operations on Processes

B System must provide mechanisms for:
® process creation,
® process termination,
e and so on as detailed next

“

Operating System Concepts Essentials — 2" Edition 3.20 Silberschatz, Galvin and Gagne ©2013




N

s,

p— I
g T Process Creation

f 4

m Parent process create children processes, which, in turn
create other processes, forming a tree of processes

m Generally, process identified and managed via a process
identifier (pid)

B Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources
B Execution options
e Parent and children execute concurrently
e Parent waits until children terminate
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Hr’ A Tree of Processes in Linux

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash khelper pdflush _ sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
ps emacs _ ;C_SCLI:J o5
pid = 9298 pid = 9204 pid =
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G5 Process Creation (Cont.)

m Address space
e Child duplicate of parent
e Child has a program loaded into it
m UNIX examples
e Tork() system call creates new process

e exec() system call used after a fork() to replace the
process’ memory space with a new program

parent Wit resumes

child ' exec() »
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m';‘ﬁ C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed"):
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

}
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&f.f;;;‘ﬁ Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VOID)

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (¥si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /% use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /# don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block #*/
NULL, /* use parent’s existing directory */
&si,
&pi))
{
fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

“
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-7 Process Termination

B Process executes last statement and then asks the operating
system to delete it using the exit() system call.

e Returns status data from child to parent (via wait())
e Process’ resources are deallocated by operating system

m Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

e Child has exceeded allocated resources
e Task assigned to child is no longer required

e The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates
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-7 Process Termination

B Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

e cascading termination. All children, grandchildren, etc. are
terminated.

e The termination is initiated by the operating system.

m The parent process may wait for termination of a child process by
using the wart()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
®m If no parent waiting (did not invoke wait()) process is a zombie
m [f parent terminated without invoking wait, process is an orphan
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® Many web browsers ran as single process (some still do)
e If one web site causes trouble, entire browser can hang or crash

m Google Chrome Browser is multiprocess with 3 different types of
processes:

e Browser process manages user interface, disk and network 1/O

e Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network 1/0O, minimizing
effect of security exploits

e Plug-in process for each type of plug-in

m =
A ) @Uﬂley;;(}p&ratlng System Co (@ BBC - Homepage E The New York Times - Brea! ﬂ' Google Chrome - The web

€3 C 0 W.google,cm*\hrome.hn{I_-"enfma*_-’down\oad—mac.html?brand:t?l{z /' wiR

| \ | /
19 Chrome Downldad  Features “English [=2]

Each tab represents a separate process
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Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:

e Information sharing

e Computation speedup

e Modularity

e Convenience
m Cooperating processes need interprocess communication (IPC)
®m Two models of IPC

e Shared memory

e Message passing

Silberschatz, Galvin and Gagne ©2013
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> Communications Models

(a) Message passing.

(b) shared memory.

process A

process B

mesSage queue

—>m0 m1 m2 m3 mn<—
kernel
kernel
(a) (b)
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B Independent process cannot affect or be affected by the execution
of another process

m Cooperating process can affect or be affected by the execution of
another process

m Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience
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“$7”  Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

Process

e unbounded-buffer places no practical limit on the size
of the buffer

e bounded-buffer assumes that there is a fixed buffer
size
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m Shared data
#define BUFFER_SIZE 10

typedef struct {

} 1tem;

item buffer[BUFFER_SIZE];
int in = 0;

int out = 0O;

®m Solution is correct, but can only use BUFFER_SIZE-1 elements
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ot Bounded-Buffer — Producer

item next_produced,;
while (true) {
[* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; [* do nothing */
buffer[in] = next_produced,;
in = (in + 1) % BUFFER_SIZE;

Operating System Concepts Essentials — 2" Edition 3.34 Silberschatz, Galvin and Gagne ©2013



/=

“$»7  Bounded Buffer — Consumer

1tem next _consumed;

while (true) {
while (in == out)

; /* do nothing */
next _consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the 1tem In next consumed */

Operating System Concepts Essentials — 2" Edition 3.35 Silberschatz, Galvin and Gagne ©2013



g%’ Interprocess Communication — Shared Memory

B An area of memory shared among the processes that wish
to communicate

® The communication is under the control of the users
processes not the operating system.

B Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

® Synchronization is discussed in great details in Chapter 5.
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%7 Interprocess Communication — Message Passing

4

® Mechanism for processes to communicate and to synchronize
their actions

B Message system — processes communicate with each other
without resorting to shared variables

m |PC facility provides two operations:
e send(message)
e receive(message)

B The message size is either fixed or variable

Silberschatz, Galvin and Gagne ©2013
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Message Passing (Cont.)

m |f processes P and Q wish to communicate, they need to:

Establish a communication link between them
Exchange messages via send/receive

B [mplementation issues:

Operating System Concepts Essentials — 2" Edition

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?
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7 Message Passing (Cont.)

® [mplementation of communication link
e Physical:
» Shared memory
» Hardware bus
» Network
e Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering
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g T Direct Communication

® Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q

® Properties of communication link
e Links are established automatically

e Alink is associated with exactly one pair of communicating
processes

e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Silberschatz, Galvin and Gagne ©2013
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57 Indirect Communication

m Messages are directed and received from mailboxes (also referred
to as ports)

e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox
®m Properties of communication link
e Link established only if processes share a common mailbox
e A link may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional
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NG T Indirect Communication

m Operations
e create a new mailbox (port)
e send and receive messages through mailbox
e destroy a mailbox
® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts Essentials — 2" Edition 3.42 Silberschatz, Galvin and Gagne ©2013




S Indirect Communication

® Mailbox sharing
e P, P,, and P; share mailbox A
e P,, sends; P, and P, receive
e Who gets the message?
m  Solutions
e Allow a link to be associated with at most two processes

e Allow only one process at a time to execute a receive
operation

e Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.
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g Synchronization

B Message passing may be either blocking or non-blocking
m Blocking is considered synchronous

e Blocking send -- the sender is blocked until the message is
received

e Blocking receive -- the receiver is blocked until a message
Is available

®m Non-blocking is considered asynchronous

e Non-blocking send -- the sender sends the message and
continue

e Non-blocking receive -- the receiver receives:
e Avalid message, or
e Null message
m Different combinations possible

e If both send and receive are blocking, we have a rendezvous
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- Synchronization (Cont.)

B Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an i1tem in next produced */

send(next_produced);

}

message next consumed;
while (true) {
receive(next_consumed);

/* consume the i1tem 1In next consumed */

}

Silberschatz, Galvin and Gagne ©2013
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B Queue of messages attached to the link.
® implemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits
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;; Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666);

e Also used to open an existing segment to share it

e Set the size of the object
ftruncate(shm fd, 4096);

e Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared
memory'") ;
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P IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char #name = "(0S";

/* strings written to shared memory */

const char *message.0 = "Hello";

const char *message 1l = "World!";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | ORDWR, 0666);

/* configure the size of the shared memory object */
ftruncate (shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message 0);

ptr += strlen(message 0);

sprintf (ptr,"%s",message 1);

ptr += strlen(message 1);

return 0;

“
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T IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "(Q0S";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, 0_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

}
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«§% Examples of IPC Systems - Mach

®m Mach communication is message based
e Even system calls are messages
e Each task gets two mailboxes at creation- Kernel and Notify
e Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()
e Mailboxes needed for commuication, created via
port_allocate()
e Send and receive are flexible, for example four options if mailbox full:
» Wait indefinitely
» Wait at most n milliseconds
» Return immediately
» Temporarily cache a message
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Examples of IPC Systems — Windows

Message-passing centric via advanced local procedure call
(LPC) facility

e Only works between processes on the same system

e Uses ports (like mailboxes) to establish and maintain
communication channels

e Communication works as follows:

» The client opens a handle to the subsystem'’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.
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g%’  Local Procedure Calls in Windows

Client

Connection
request

Server

Handle

Connection
S
Port

Handle

Client
Communication Port

14

Server
Communication Port

Handle
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&«;}‘ﬁ Communications in Client-Server Systems

Sockets
Remote Procedure Calls
Pipes

Remote Method Invocation (Java)

“
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-7 Sockets

B A socket is defined as an endpoint for communication

m Concatenation of IP address and port — a number included at
start of message packet to differentiate network services on a
host

B The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

®m  Communication consists between a pair of sockets

m All ports below 1024 are well known, used for standard
services

m Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

i > y“s“"‘; _.\;\l
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P Socket Communication
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

“
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Sockets In Java

m Three types of sockets

e Connection-oriented
(TCP)

e Connectionless (UDP)

e MulticastSocket
class— data can be sent
to multiple recipients

®m Consider this “Date” server:

Operating System Concepts Essentials — 2" Edition

import java.net.*;
import java.io.¥;

public class DateServer

{

public static void main(String[] args) {
try {

ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}
}
}
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-7 Remote Procedure Calls

®m Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

e Again uses ports for service differentiation

B Stubs — client-side proxy for the actual procedure on the
server

B The client-side stub locates the server and marshalls the
parameters

® The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

® On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)
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w & Remote Procedure Calls (Cont.)

m Data representation handled via External Data
Representation (XDL) format to account for different
architectures

e Big-endian and little-endian
B Remote communication has more failure scenarios than local

e Messages can be delivered exactly once rather than at
most once

m OS typically provides a rendezvous (or matchmaker) service
to connect client and server

Silberschatz, Galvin and Gagne ©2013
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&ﬂ;;i Execution of RPC

client messages server

user calls kernel
to send RPC
message to
procedure X

From: client
kernel sends e matchmaker
message to Pott: matchmaker receives
matchmaker to R'e' e message, looks
find port number fo.r RPC X up answer

h 4

From: server
kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port P

Port: P

From: client daemon
kernel sends To: server listening to
RPC Port: port P port P receives

<gontents> message

h 4

From: RPC daemon
kernel receives Port: P processes
reply, passes To: client request and
it to user Port: kernel processes send

<outputs output
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o Pipes

B Acts as a conduit allowing two processes to communicate
M |[ssues:
e |Is communication unidirectional or bidirectional?

e In the case of two-way communication, is it half or full-
duplex?

e Must there exist a relationship (i.e., parent-child) between
the communicating processes?

e Can the pipes be used over a network?

m Ordinary pipes — cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.

®m Named pipes — can be accessed without a parent-child
relationship.

N \,: \
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SPr Ordinary Pipes

® Ordinary Pipes allow communication in standard producer-consumer
style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

parent child
fd[0] fd[1] fd[O] fd[1]

‘ |
L)

® Windows calls these anonymous pipes

m See Unix and Windows code samples in textbook
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&T.,:i Named Pipes

®m Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for communication
Provided on both UNIX and Windows systems
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End of Chapter 3
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