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Objectives 

 Discuss the goals and principles of protection in a modern 
computer system 

 Explain how protection domains combined with an access 
matrix are used to specify the resources a process may 
access 

 Examine capability and language-based protection systems 
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Goals of Protection 

 In one protection model,  computer consists of a collection of 
objects, hardware or software 

 Each object has a unique name and can be accessed through 
a well-defined set of operations 

 Protection problem - ensure that each object is accessed 
correctly and only by those processes that are allowed to do so 
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Principles of Protection 

 Guiding principle – principle of least privilege 
 Programs, users and systems should be given just 

enough privileges to perform their tasks 
 Limits damage if entity has a bug, gets abused 
 Can be static (during life of system, during life of 

process)  
 Or dynamic (changed by process as needed) – domain 

switching, privilege escalation 
 “Need to know” a similar concept regarding access to 

data 
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Principles of Protection (Cont.) 

 Must consider “grain” aspect 
 Rough-grained  privilege management easier, simpler, 

but least privilege now done in large chunks 
 For example, traditional Unix processes either have 

abilities of the associated user, or of root 
 Fine-grained management more complex, more 

overhead, but more protective 
 File ACL lists, RBAC 

 Domain can be user, process, procedure 
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Domain Structure 

 Access-right = <object-name, rights-set> 
where rights-set is a subset of all valid operations that can 
be performed on the object  

 Domain = set of access-rights  
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Domain Implementation (UNIX) 

 Domain = user-id 

 Domain switch accomplished via file system 
 Each file has associated with it a domain bit (setuid bit) 
When file is executed and setuid = on, then user-id is 

set to owner of the file being executed 
  When execution completes user-id is reset  

 Domain switch accomplished via passwords 
 su command temporarily switches to another user’s 

domain when other domain’s password provided 

 Domain switching via commands 
 sudo command prefix executes specified command in 

another domain (if original domain has privilege or 
password given) 



13.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Domain Implementation (MULTICS) 

 Let Di and Dj be any two domain rings 
 If j < I ⇒ Di  ⊆ Dj 
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Multics Benefits and Limits 

 Ring / hierarchical structure provided more than the basic 
kernel / user or root / normal user design 

 Fairly complex -> more overhead 
 But does not allow strict need-to-know 

 Object accessible in Dj but not in Di, then j must be < i 
 But then every segment accessible in Di also 

accessible in Dj 
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Access Matrix 

 View protection as a matrix (access matrix) 

 Rows represent domains 

 Columns represent objects 

 Access(i, j) is the set of operations that a process 
executing in Domaini can invoke on Objectj 
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Use of Access Matrix 

 If a process in Domain Di tries to do “op” on object Oj, then 
“op” must be in the access matrix 

 User who creates object can define access column for that 
object 

 Can be expanded to dynamic protection 
 Operations to add, delete access rights 
 Special access rights: 

 owner of Oi 
 copy op from Oi to Oj (denoted by “*”) 
 control – Di can modify Dj access rights 
 transfer – switch from domain Di to Dj 

 Copy and Owner applicable to an object 
 Control applicable to domain object 
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Use of Access Matrix (Cont.) 

 Access matrix design separates mechanism from policy 
 Mechanism  

 Operating system provides access-matrix + rules 
 If ensures that the matrix is only manipulated by 

authorized agents and that rules are strictly enforced 
 Policy 

 User dictates policy 
Who can access what object and in what mode 

 But doesn’t solve the general confinement problem 
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Access Matrix of Figure A with Domains as Objects 
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Access Matrix with Copy Rights 
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Access Matrix With Owner Rights 
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Modified Access Matrix of Figure B 
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Implementation of Access Matrix 

 Generally, a sparse matrix 
 Option 1 – Global table 

 Store ordered triples <domain, object, 
rights-set> in table 

 A requested operation M on object Oj within domain 
Di -> search table for < Di, Oj, Rk >  
 with M ∈ Rk 

 But table could be large -> won’t fit in main memory 
 Difficult to group objects (consider an object that all 

domains can read) 
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Implementation of Access Matrix (Cont.) 

 Option 2 – Access lists for objects 
 Each column implemented as an access list for one 

object 
 Resulting per-object list consists of ordered pairs 

<domain, rights-set> defining all domains with 
non-empty set of access rights for the object 

 Easily extended to contain default set -> If M ∈ default 
set, also allow access 
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Implementation of Access Matrix (Cont.) 

 Each column = Access-control list for one object  
Defines who can perform what operation 
 
 Domain 1 = Read, Write 
 Domain 2 = Read 
 Domain 3 = Read 
         

 Each Row = Capability List (like a key) 
For each domain, what operations allowed on what objects 

Object F1 – Read 
Object F4 – Read, Write, Execute 
Object F5 – Read, Write, Delete, Copy 
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Implementation of Access Matrix (Cont.) 

 Option 3 – Capability list for domains 
 Instead of object-based, list is domain based 
 Capability list for domain is list of objects together with operations 

allows on them 
 Object represented by its name or address, called a capability 
 Execute operation M on object Oj, process requests operation and 

specifies capability as parameter 
 Possession of capability means access is allowed 

 Capability list associated with domain but never directly accessible 
by domain 
 Rather, protected object, maintained by OS and accessed 

indirectly 
 Like a “secure pointer” 
 Idea can be extended up to applications 
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Implementation of Access Matrix (Cont.) 
 

 Option 4 – Lock-key 
 Compromise between access lists and capability lists 
 Each object has list of unique bit patterns, called locks 
 Each domain as list of unique bit patterns called keys 
 Process in a domain can only access object if domain 

has key that matches one of the locks 
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Comparison of Implementations 

 Many trade-offs to consider 
 Global table is simple, but can be large 
 Access lists correspond to needs of users 

 Determining set of access rights for domain non-
localized so difficult 

 Every access to an object must be checked 
– Many objects and access rights -> slow 

 Capability lists useful for localizing information for a given 
process 
 But revocation capabilities can be inefficient 

 Lock-key effective and flexible, keys can be passed freely 
from domain to domain, easy revocation  



13.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Comparison of Implementations (Cont.) 

 Most systems use combination of access lists and 
capabilities 
 First access to an object -> access list searched 

 If allowed, capability created and attached to 
process 

– Additional accesses need not be checked 
 After last access, capability destroyed 
 Consider file system with ACLs per file 
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Access Control 

 Protection can be applied to non-file 
resources 

 Oracle Solaris 10 provides role-
based access control (RBAC) to 
implement least privilege 
 Privilege is right to execute 

system call or use an option 
within a system call 

 Can be assigned to processes 
 Users assigned roles granting 

access to privileges and 
programs 
 Enable role via password to 

gain its privileges 
 Similar to access matrix 
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Revocation of Access Rights 

 Various options to remove the access right of a domain to an 
object 
 Immediate vs. delayed 
 Selective vs. general 
 Partial vs. total 
 Temporary vs. permanent 

 Access List – Delete access rights from access list 
 Simple – search access list and remove entry 
 Immediate, general or selective, total or partial, 

permanent or temporary 
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Revocation of Access Rights (Cont.) 

 Capability List – Scheme required to locate capability in the 
system before capability can be revoked 
 Reacquisition – periodic delete, with require and denial if 

revoked 
 Back-pointers – set of pointers from each object to all 

capabilities of that object (Multics) 
 Indirection – capability points to global table entry which points 

to object – delete entry from global table, not selective (CAL) 
 Keys – unique bits associated with capability, generated when 

capability created 
Master key associated with object, key matches master key 

for access 
 Revocation – create new master key 
 Policy decision of who can create and modify keys – object 

owner or others? 
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Capability-Based Systems  

 Hydra 
 Fixed set of access rights known to and interpreted by the system 

 i.e. read, write, or execute each memory segment 
 User can declare other auxiliary rights and register those with 

protection system 
 Accessing process must hold capability and know name of 

operation 
 Rights amplification allowed by trustworthy  procedures for a 

specific type  
 Interpretation of user-defined rights performed solely by user's 

program; system provides access protection for use of these rights 
 Operations on objects defined procedurally – procedures are 

objects accessed indirectly by capabilities 
 Solves the problem of mutually suspicious subsystems 
 Includes library of prewritten security routines 
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Capability-Based Systems (Cont.)  

 Cambridge CAP System  
 Simpler but powerful 
 Data capability - provides standard read, write, execute 

of individual storage segments associated with object – 
implemented in microcode 

 Software capability -interpretation left to the 
subsystem, through its protected procedures 
 Only has access to its own subsystem 
 Programmers must learn principles and techniques 

of protection 
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Language-Based Protection 

 Specification of protection in a programming language 
allows the high-level description of policies for the 
allocation and use of resources 

 Language implementation can provide software for 
protection enforcement when automatic hardware-
supported checking is unavailable 

 Interpret protection specifications to generate calls on 
whatever protection system is provided by the hardware 
and the operating system 
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Protection in Java 2 

 Protection is handled by the Java Virtual Machine (JVM) 
 A class is assigned a protection domain when it is loaded by 

the JVM 
 The protection domain indicates what operations the class 

can (and cannot) perform 
 If a library method is invoked that performs a privileged 

operation, the stack is inspected to ensure the operation can 
be performed by the library 

 Generally, Java’s load-time and run-time checks enforce type 
safety 

 Classes effectively encapsulate and protect data and 
methods from other classes 
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Stack Inspection 
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End of Chapter 13 
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