Chapter 6: CPU Scheduling

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

3

Chapter 6: CPU Scheduling

v&hl}‘
‘. 3
NG

7\

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Real-Time CPU Scheduling
Operating Systems Examples

Algorithm Evaluation

'''''

by v
Do g, N, .,=|
= e
P
i A9x "

Operating System Concepts Essentials — 2" Edition 6.2 Silberschatz, Galvin and Gagne ©2013

gF Objectives

® To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems

To describe various CPU-scheduling algorithms

To discuss evaluation criteria for selecting a CPU-scheduling
algorithm for a particular system

® To examine the scheduling algorithms of several operating
systems

Operating System Concepts Essentials — 2" Edition 6.3 Silberschatz, Galvin and Gagne ©2013

> Basic Concepts

®m Maximum CPU utilization
obtained with multiprogramming

m CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/O wait

CPU burst followed by I/O burst

CPU burst distribution is of main
concern

Operating System Concepts Essentials — 2" Edition 6.4

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/0

load store
add store
read from file

wait for /0O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Silberschatz, Galvin and Gagne ©2013

@}‘»jf Histogram of CPU-burst Times

|L‘l,‘_; &

160

140 \
120

—

o

o
ﬂ#

frequency
[00]
o
=il

40 \
20 \

0 8 16 24 32 40
burst duration (milliseconds)

L

A

Operating System Concepts Essentials — 2"d Edition 6.5 Silberschatz, Galvin and Gagne ©2013

A
r;}!

C—';l CPU Scheduler

m Short-term scheduler selects from among the processes in
ready queue, and allocates the CPU to one of them

e Queue may be ordered in various ways
B CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive

All other scheduling is preemptive
e Consider access to shared data
e Consider preemption while in kernel mode
e Consider interrupts occurring during crucial OS activities

\

- T
- “ »
N
L
i

e o
W
\

A

Operating System Concepts Essentials — 2" Edition 6.6 Silberschatz, Galvin and Gagne ©2013

(P Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to
restart that program

m Dispatch latency — time it takes for the dispatcher to stop
one process and start another running

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.7

N

s,

P

M— Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

Throughput — # of processes that complete their execution per
time unit

® Turnaround time — amount of time to execute a particular
process

m Waiting time — amount of time a process has been waiting in the
ready queue

® Response time — amount of time it takes from when a request
was submitted until the first response is produced, not output (for
time-sharing environment)

Operating System Concepts Essentials — 2" Edition 6.8 Silberschatz, Galvin and Gagne ©2013

=

&ﬁ:f;;'-ffv Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

“

Operating System Concepts Essentials — 2" Edition 6.9 Silberschatz, Galvin and Gagne ©2013

;;/ First- Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

®m Suppose that the processes arrive in the order: P, , P, , P4
The Gantt Chart for the schedule is:

m Waiting time for P, =0; P, =24; P;=27
m Average waiting time: (0 +24 + 27)/3 =17

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.10

o FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P2] P3] Pl
B The Gantt chart for the schedule is:

Waiting time for P, =6;P,=0.P;=3
Average waiting time: (6 + 0+ 3)/3=3
Much better than previous case

Convoy effect - short process behind long process
e Consider one CPU-bound and many I/O-bound processes

Operating System Concepts Essentials — 2" Edition 6.11 Silberschatz, Galvin and Gagne ©2013

]

e

‘n{ﬁ Shortest-Job-First (SJF) Scheduling

e

4

B Associate with each process the length of its next CPU burst

e Use these lengths to schedule the process with the shortest
time

m SJF is optimal — gives minimum average waiting time for a given
set of processes

e The difficulty is knowing the length of the next CPU request
e Could ask the user

Operating System Concepts Essentials — 2" Edition 6.12 Silberschatz, Galvin and Gagne ©2013

g Example of SJF

Process Burst Time
P, 6
P, 8
Ps 7
P, 3

®m Average waitingtime=(3+16+9+0)/4=7

Operating System Concepts Essentials — 2" Edition 6.13 Silberschatz, Galvin and Gagne ©2013

‘f{f—} Determining Length of Next CPU Burst

® Can only estimate the length — should be similar to the previous one
e Then pick process with shortest predicted next CPU burst

m Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, =actual length of n' CPU burst

2. 7,1 =predicted value for the next CPU burst
3. ,0<5a<1

4. Define: 7,,=al + (1— a)Tn-

®m Commonly, a set to Y2

® Preemptive version called shortest-remaining-time-first

Operating System Concepts Essentials — 2" Edition 6.14 Silberschatz, Galvin and Gagne ©2013

=

&g‘;—‘; Prediction of the Length of the Next CPU Burst

|L‘l,‘_; &

12 //_

/
8 //
t 6
L/
_/
4
2
time ——
CPU burst (1) 6 4 6 4 13 13 13

‘guess” (1) 10 8 6 6 5 9 11 12

A

Operating System Concepts Essentials — 2"d Edition 6.15 Silberschatz, Galvin and Gagne ©2013

?

“$»/ Examples of Exponential Averaging

m a=0
® Tha1 =Ty
e Recent history does not count
m o=l
® T =at,
e Only the actual last CPU burst counts
m |f we expand the formula, we get:
Tp—ot+1-a)at, ;+ ...
+H(1l-a)Yot, j+..
(1 - o)1

® Since both o and (1 - o) are less than or equal to 1, each
successive term has less weight than its predecessor

Operating System Concepts Essentials — 2" Edition 6.16 Silberschatz, Galvin and Gagne ©2013

=1,

{ -
ﬁﬁ-%l

““5"” Example of Shortest-remaining-time-first

® Now we add the concepts of varying arrival times and preemption to

the analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
® Preemptive SJF Gantt Chart
P, P, P, P, P,
0 1 5 10 17 26
B Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5
msec

Operating System Concepts Essentials — 2" Edition 6.17 Silberschatz, Galvin and Gagne ©2013

N Priority Scheduling

m A priority number (integer) is associated with each process

m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e Nonpreemptive

m SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

® Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process

/‘»““ -'\1

Operating System Concepts Essentials — 2" Edition 6.18 Silberschatz, Galvin and Gagne ©2013

“GF Example of Priority Scheduling
Process Burst Time Priority
P, 10 3
P, 1 1
P 2 4
P, 1 5
P. 5 2

®m Priority scheduling Gantt Chart

0 1 6 16 18 19

® Average waiting time = 8.2 msec

SRl
N ol
[B
Wl <A

Operating System Concepts Essentials — 2"d Edition 6.19 Silberschatz, Galvin and Gagne ©2013

A
r;}rd

J} Round Robin (RR)

m Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)g time units.

® Timer interrupts every quantum to schedule next process
m Performance
e (large = FIFO

e ¢ small = q must be large with respect to context switch,
otherwise overhead is too high

F - .I-' e ¥ v: Ll '..'I.. ‘
= R
o '%;r-('

A%

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.20

=

H:-'i Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
P, 3

m Typically, higher average turnaround than SJF, but better
response

m g should be large compared to context switch time
m g usually 10ms to 100ms, context switch < 10 usec

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.21

y

iy

m;;;‘ﬁ Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 5 10
1 9

“

Operating System Concepts Essentials — 2"d Edition 6.22 Silberschatz, Galvin and Gagne ©2013

‘f‘%}-’ Turnaround Time Varies With The Time Quantum

|L‘l,‘_; &

12.5

12.0

process | time
P, 6
Ps 3
Py 1
P, 7

g 115
5 A
£ 11.0
)
£ 105
3
© 10.0
©
> 95

9.0

1 2

Operating System Concepts Essentials — 2"d Edition

3

4 5 6
time quantum

6.23

7

80% of CPU bursts
should be shorter than g

‘}"L ail
Silberschatz, Galvin and Gagne ©2013

y

s

! :
G5 Multilevel Queue

® Ready queue is partitioned into separate queues, eg:
e foreground (interactive)
e background (batch)
Process permanently in a given queue
Each queue has its own scheduling algorithm:
e foreground — RR
e background — FCFS
m Scheduling must be done between the queues:

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

e 20% to background in FCFS

i > y“s“"‘; _.\;\l
o “%-(1
“l 29K

Operating System Concepts Essentials — 2" Edition 6.24 Silberschatz, Galvin and Gagne ©2013

Multilevel Queue Scheduling

highest priority

—> interactive editing processes [———p
m— batch processes ———
E— student processes -

lowest priority

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2"d Edition 6.25

Multilevel Feedback Queue

B A process can move between the various queues; aging can be
implemented this way

m Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues

scheduling algorithms for each queue

method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

Operating System Concepts Essentials — 2" Edition 6.26 Silberschatz, Galvin and Gagne ©2013

=

=

fim .
ﬁﬁ-%l

%> Example of Multilevel Feedback Queue

® Three queues:

e Q,— RR with time quantum 8
milliseconds

e Q;—RRtime quantum 16 milliseconds
e Q,—-FCFS

m Scheduling

e A new job enters queue Q, which is
served FCFS

» When it gains CPU, job receives 8
milliseconds

» If it does not finish in 8
milliseconds, job is moved to
queue Q,

e AtQ, jobis again served FCFS and
receives 16 additional milliseconds

» If it still does not complete, it is
preempted and moved to queue Q,

Operating System Concepts Essentials — 2" Edition 6.27

il "
» guantum = 8

<A .
> guantum = 16

il

s 4

v

FCFS

Silberschatz, Galvin and Gagne ©2013

y

N

;;:i ' Thread Scheduling

s,

&

Distinction between user-level and kernel-level threads
When threads supported, threads scheduled, not processes

® Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP

e Known as process-contention scope (PCS) since scheduling
competition is within the process

e Typically done via priority set by programmer

m Kernel thread scheduled onto available CPU is system-contention
scope (SCS) — competition among all threads in system

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.28

o]
4.':_

(PN
W

i Pthread Scheduling

m APl allows specifying either PCS or SCS during thread creation

e PTHREAD_SCOPE_PROCESS schedules threads using
PCS scheduling

e PTHREAD_SCOPE_SYSTEM schedules threads using
SCS scheduling

m Can be limited by OS — Linux and Mac OS X only allow
PTHREAD SCOPE_SYSTEM

Operating System Concepts Essentials — 2"d Edition 6.29 Silberschatz, Galvin and Gagne ©2013

A
r;}!

- Pthread Scheduling AP

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

Int 1, scope;
pthread t tid[NUM THREADS];

pthread attr_t attr;
/* get the default attributes */
pthread attr_init(&attr);

/* First 1nquire on the current scope */
iIT (pthread_attr_getscope(&attr, &scope) !'= 0)

fprintf(stderr, "Unable to get scheduling scope\n');

else {
iIT (scope == PTHREAD_ SCOPE_PROCESS)
printf("*PTHREAD_ SCOPE_PROCESS™);
else 1T (scope == PTHREAD_SCOPE_SYSTEM)
printf(""PTHREAD_SCOPE_SYSTEM™);

else
fprintf(stderr, "lllegal scope value.\n");

}

Operating System Concepts Essentials — 2" Edition 6.30

Silberschatz, Galvin and Gagne ©2013

r &1 Pthread Scheduling AP

/* set the scheduling algorithm to PCS or SCS */
pthread attr_setscope(&attr, PTHREAD SCOPE_SYSTEM);

/* create the threads */
for (1 = 0; 1 < NUM_THREADS; 1++)

pthread create(&tid[i1],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; 1 < NUM_THREADS; i1++)

pthread_ join(tid[i], NULL);
+
/* Each thread will begin control in this function */
voild *runner(void *param)

{

/* do some work ... */
pthread _exit(0);

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 6.31 Silberschatz, Galvin and Gagne ©2013

A
¥

«§%’ Multiple-Processor Scheduling

m CPU scheduling more complex when multiple CPUs are
available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing — only one processor accesses
the system data structures, alleviating the need for data sharing

B Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has
its own private queue of ready processes

e Currently, most common

B Processor affinity — process has affinity for processor on which
it is currently running

e soft affinity
e hard affinity
e Variations including processor sets

Operating System Concepts Essentials — 2" Edition 6.32 Silberschatz, Galvin and Gagne ©2013

4

- 3

Hﬁ’ NUMA and CPU Scheduling

4

CPU CPU

S

\ i
fast access WQ\ fast access
@SS

memory memory

computer

Note that memory-placement algorithms can also consider affinity

Operating System Concepts Essentials — 2"d Edition 6.33 Silberschatz, Galvin and Gagne ©2013

‘? ;-—i Multiple-Processor Scheduling — Load Balancing

m |f SMP, need to keep all CPUs loaded for efficiency
Load balancing attempts to keep workload evenly distributed

Push migration — periodic task checks load on each processor,
and if found pushes task from overloaded CPU to other CPUs

m Pull migration — idle processors pulls waiting task from busy
processor

\...

r‘»% S

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.34

g Multicore Processors

B Recent trend to place multiple processor cores on same
physical chip

Faster and consumes less power
Multiple threads per core also growing

e Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

Operating System Concepts Essentials — 2" Edition 6.35 Silberschatz, Galvin and Gagne ©2013

“$77 Multithreaded Multicore System

C compute cycle M |memory stall cycle
thiead C M C M C M C M
time .
L . e M & M & M .
Ll G M G M C M C

time

“

Operating System Concepts Essentials — 2" Edition 6.36 Silberschatz, Galvin and Gagne ©2013

A
!'}‘r

,.r.m-l
_ gt

.4 Real-Time CPU Scheduling

m Can present obvious
challenges

m Soft real-time systems — no
guarantee as to when critical
real-time process will be
scheduled

m Hard real-time systems —
task must be serviced by its
deadline

m Two types of latencies affect
performance

1. Interrupt latency — time from
arrival of interrupt to start of
routine that services interrupt

2. Dispatch latency — time for
schedule to take current process
off CPU and switch to another

Operating System Concepts Essentials — 2" Edition

6.37

interrupt
‘ determine
task T running It;terru pt
pe
context
switch
ISR
I
interrupt
latency
time

Silberschatz, Galvin and Gagne ©2013

% Real-Time CPU Scheduling (Cont.)

m Conflict phase of event response to event
dispatch latency:

response interval P>

1. Preemption of orocess made
any process interrupt available

. . processing
running in kernel
mode <«— dispatch latency ———»

A

real-time

2. R(_elegse by low- process
priority process | execution -

>

of resources e—— conflicts —»te— dispatch —»

needed by high-
priority
processes

time

Operating System Concepts Essentials — 2" Edition 6.38 Silberschatz, Galvin and Gagne ©2013

ot Priority-based Scheduling

®m For real-time scheduling, scheduler must support preemptive, priority-
based scheduling
e But only guarantees soft real-time

®m For hard real-time must also provide ability to meet deadlines

B Processes have new characteristics: periodic ones require CPU at
constant intervals
e Has processing time t, deadline d, period p
o Ostsd=sp
e Rate of periodic task is 1/p

| P [P I P |
| 1 I
| d | | d | | d |

ST
| I

[
period4 period, periods

Operating System Concepts Essentials — 2" Edition 6.39 Silberschatz, Galvin and Gagne ©2013

pi
!'}‘r

“»”7 Virtualization and Scheduling

m Virtualization software schedules multiple guests onto
CPU(s)

m Each guest doing its own scheduling
e Not knowing it doesn’ t own the CPUs
e Can result in poor response time
e Can effect time-of-day clocks in guests

m Can undo good scheduling algorithm efforts of guests

Operating System Concepts Essentials — 2" Edition 6.40 Silberschatz, Galvin and Gagne ©2013

> o Rate Montonic Scheduling

m A priority is assigned based on the inverse of its period
m Shorter periods = higher priority;
®m Longer periods = lower priority

®m P, is assigned a higher priority than P,.

Deadlines P, P, P, P, Py, Py

' ' ! :

FT1 IP2I FI)1 P2| | Fh |P2| R I:’2| L]
0 10 20 30 40 50 60 70 80 90 100110120 130 140 150 160 170 180 190 200

Operating System Concepts Essentials — 2" Edition 6.41

T

oy L)
e 1)
' \
Wl <A

Silberschatz, Galvin and Gagne ©2013

y

iy

&f.xr-%,—x Missed Deadlines with Rate Monotonic Scheduling

Deadlines P, Ps P, P, P
| | | o
Bl iy B Fl | | | | | | | |

O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

“

Operating System Concepts Essentials — 2"d Edition 6.42 Silberschatz, Galvin and Gagne ©2013

Ry

-

%53‘3* Earliest Deadline First Scheduling (EDF)

®m Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

Deadlines P-| P2 P1 P-| P2
|P1 | | o | |P1 | |P2 |P1 | | = | | |
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Operating System Concepts Essentials — 2" Edition 6.43 Silberschatz, Galvin and Gagne ©2013

=

~“$»7 Proportional Share Scheduling

m T shares are allocated among all processes in the system

® An application receives N shares where N< T

®m This ensures each application will receive N / T of the total
processor time

Operating System Concepts Essentials — 2" Edition 6.44 Silberschatz, Galvin and Gagne ©2013

T

‘\.q
“P“l

“$¥/ POSIX Real-Time Scheduling

The POSIX.1b standard
API provides functions for managing real-time threads
Defines two scheduling classes for real-time threads:

SCHED_FIFO - threads are scheduled using a FCFS strategy with a
FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_ RR - similar to SCHED_ FIFO except time-slicing occurs for
threads of equal priority

= B B N

m Defines two functions for getting and setting scheduling policy:
1. pthread attr _getsched policy(pthread attr_ t *attr,
int *policy)

2. pthread _attr_setsched policy(pthread attr_ t *attr,
int policy)

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 6.45 Silberschatz, Galvin and Gagne ©2013

=

~
,r"'?"-’"?'rj

“$7/ POSIX Real-Time Scheduling AP

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])
{

int 1, policy;
pthread t tid[NUM_THREADS];

pthread attr_t attr;
/* get the default attributes */
pthread attr_init(&attr);

/* get the current scheduling policy */
iIT (pthread_attr_getschedpolicy(&attr, &policy) !'= 0)

fprintf(stderr, "Unable to get policy.\n"");

else {
1T (policy == SCHED _OTHER) printf(*'SCHED_ OTHER\Nn'");
else 1t (policy == SCHED RR) printf("*'SCHED RR\n");
else 1Tt (policy == SCHED FIFO) printf("'SCHED_FIFO\n™);

}

Operating System Concepts Essentials — 2" Edition 6.46 Silberschatz, Galvin and Gagne ©2013

]
1{"‘_

{ ca

377 POSIX Real-Time Scheduling API (Cont.)

>

/* set the scheduling policy - FIFO, RR, or OTHER */
iIT (pthread _attr_ setschedpolicy(&attr, SCHED FIFO) != 0)

fprintf(stderr, "Unable to set policy.\n"");

/* create the threads */
for (i = 0; 1 < NUM_THREADS; 1++)

pthread create(&tid[1],&attr,runner,NULL);

/* now join on each thread */
for (i = 0; 1 < NUM_THREADS; i++)

pthread join(tid[i], NULL);

/* Each thread will begin control in this function */
void *runner(void *param)

{

/* do some work ... */
pthread exit(0);

Operating System Concepts Essentials — 2" Edition 6.47 Silberschatz, Galvin and Gagne ©2013

P Operating System Examples

B Linux scheduling

® Windows scheduling

®m Solaris scheduling

Al

Operating System Concepts Essentials — 2" Edition 6.48 Silberschatz, Galvin and Gagne ©2013

T

-

.

-7 Linux Scheduling Through Version 2.5

m Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

m Version 2.5 moved to constant order O(1) scheduling time
e Preemptive, priority based

Two priority ranges: time-sharing and real-time

Real-time range from 0 to 99 and nice value from 100 to 140

Map into global priority with numerically lower values indicating higher
priority

Higher priority gets larger q
Task run-able as long as time left in time slice (active)
If no time left (expired), not run-able until all other tasks use their slices
All run-able tasks tracked in per-CPU runqueue data structure
» Two priority arrays (active, expired)
» Tasks indexed by priority
» When no more active, arrays are exchanged

e Worked well, but poor response times for interactive processes

F - .I-' e ¥ v: N | '..'I.. ‘
= M
o '%;r-('

AN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.49

Linux Scheduling in Version 2.6.23 +

Completely Fair Scheduler (CFS)

Scheduling classes
e Each has specific priority
e Scheduler picks highest priority task in highest scheduling class

e Rather than quantum based on fixed time allotments, based on proportion of CPU
time

e 2 scheduling classes included, others can be added
1. default
2. real-time
Quantum calculated based on nice value from -20 to +19

e Lower value is higher priority

e Calculatestarget latency — interval of time during which task should run at least
once

e Target latency can increase if say number of active tasks increases
CFS scheduler maintains per task virtual run time in variable vruntime

e Associated with decay factor based on priority of task — lower priority is higher
decay rate

e Normal default priority yields virtual run time = actual run time
To decide next task to run, scheduler picks task with lowest virtual run time

Operating System Concepts Essentials — 2" Edition 6.50 Silberschatz, Galvin and Gagne ©2013

pi
!'}‘r

&

(P CFS Performance

The Linux CFS scheduler provides an efficient algorithm for selecting which
task to run next. Each runnable task is placed in a red-black tree—a balanced
binary search tree whose key is based on the value of vruntime. This tree is
shown below:

Task with the smallest
value of vruntime

srﬁaller] Ie;r er
Value of vruntime g

When a task becomes runnable, it is added to the tree. If a task on the
tree is not runnable (for example, if it is blocked while waiting for I/0), it is
removed. Generally speaking, tasks that have been given less processing time
(smaller values of vruntime) are toward the left side of the tree, and tasks
that have been given more processing time are on the right side. According
to the properties of a binary search tree, the leftmost node has the smallest
key value, which for the sake of the CFS scheduler means that it is the task
with the highest priority. Because the red-black tree is balanced, navigating
it to discover the leftmost node will require O(lgN) operations (where N
is the number of nodes in the tree). However, for efficiency reasons, the
Linux scheduler caches this value in the variable rb_leftmost, and thus
determining which task to run next requires onlv retrieving the cached value.

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.51

G Linux Scheduling (Cont.)

m Real-time scheduling according to POSIX.1b
e Real-time tasks have static priorities
Real-time plus normal map into global priority scheme
Nice value of -20 maps to global priority 100
® Nice value of +19 maps to priority 139

Real-Time Normal
0 99 100 139

Higher Lower
Priority

Operating System Concepts Essentials — 2" Edition 6.52 Silberschatz, Galvin and Gagne ©2013

¥

,r.',w"fl
d T ’

g Windows Scheduling

Windows uses priority-based preemptive scheduling
Highest-priority thread runs next
Dispatcher is scheduler

Thread runs until (1) blocks, (2) uses time slice, (3)
preempted by higher-priority thread

Real-time threads can preempt non-real-time
32-level priority scheme

Variable class is 1-15, real-time class is 16-31
Priority O is memory-management thread
Queue for each priority

If no run-able thread, runs idle thread

Operating System Concepts Essentials — 2"d Edition 6.53 Silberschatz, Galvin and Gagne ©2013

]
11:;

R : - -
ot Windows Priority Classes

® Win32 API identifies several priority classes to which a process can belong

e REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

e All are variable except REALTIME

m A thread within a given priority class has a relative priority

e TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,
LOWEST, IDLE

®m Priority class and relative priority combine to give numeric priority
m Base priority is NORMAL within the class
®m [f quantum expires, priority lowered, but never below base

Operating System Concepts Essentials — 2" Edition 6.54 Silberschatz, Galvin and Gagne ©2013

)
{2

— - A
“$w7 Windows Priority Classes (Cont.)

m |f wait occurs, priority boosted depending on what was waited for
m Foreground window given 3x priority boost
®m Windows 7 added user-mode scheduling (UMS)
e Applications create and manage threads independent of kernel
e For large number of threads, much more efficient

e UMS schedulers come from programming language libraries like
C++ Concurrent Runtime (ConcRT) framework

Operating System Concepts Essentials — 2"d Edition 6.55 Silberschatz, Galvin and Gagne ©2013

Windows Priorities

g | high | 2000 | nomal | 200 :c?rli%rity
time-critical 31 15 15 15 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 4
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1
Operating System Concepts Essentials — 2"d Edition 6.56 Silberschatz, Galvin and Gagne ©201C;

e
S
2 -‘P"hl

Solaris

® Priority-based scheduling

B Six classes available

Time sharing (default) (TS)
Interactive (1A)

Real time (RT)

System (SYS)

Fair Share (FSS)

Fixed priority (FP)

B Given thread can be in one class at a time

m Each class has its own scheduling algorithm

B Time sharing is multi-level feedback queue

Loadable table configurable by sysadmin

Operating System Concepts Essentials — 2" Edition 6.57

Silberschatz, Galvin and Gagne ©2013

A

- 3

g Solaris Dispatch Table
time return

time quantum from

priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

Operating System Concepts Essentials — 2" Edition

6.58

Silberschatz, Galvin and Gagne ©2013

&ﬁrsg;,..x Solaris Scheduling

global
priority

169
highest

160
159

100
99

60
59

lowest 0

Operating System Concepts Essentials — 2"d Edition

scheduling
order

) first
interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads

interactive (IA) threads

last

6.59

Silberschatz, Galvin and Gagne ©2013

- 3

A

L i -‘!"'VJ
L

r & Solaris Scheduling (Cont.)

m Scheduler converts class-specific priorities into a per-thread global
priority

e Thread with highest priority runs next

e Runs until (1) blocks, (2) uses time slice, (3) preempted by
higher-priority thread

e Multiple threads at same priority selected via RR

Operating System Concepts Essentials — 2" Edition 6.60 Silberschatz, Galvin and Gagne ©2013

o ot Algorithm Evaluation

®m How to select CPU-scheduling algorithm for an OS?
Determine criteria, then evaluate algorithms
Deterministic modeling
e Type of analytic evaluation

e Takes a particular predetermined workload and defines the
performance of each algorithm for that workload

m Consider 5 processes arriving at time O:

Process Burst Time

P 10
b, 29
P; 3
Py 7
Ps 12

Operating System Concepts Essentials — 2" Edition 6.61 Silberschatz, Galvin and Gagne ©2013

A

«

i -‘!"'VJ

ar & Deterministic Evaluation

m For each algorithm, calculate minimum average waiting time

m Simple and fast, but requires exact numbers for input, applies only to
those inputs

e FCSis 28ms:
P1 P2 P3 P4 P5
0 10 39 42 49 61
e Non-preemptive SFJ is 13ms:
NS P, P, 12
0 3 10 20 32 61
e RRis 23ms:
P, A N) P, S 2 E N
0 10 20 23 30 40 50 52 61

Operating System Concepts Essentials — 2" Edition 6.62 Silberschatz, Galvin and Gagne ©2013

m Describes the arrival of processes, and CPU and I/O bursts
probabilistically

e Commonly exponential, and described by mean
e Computes average throughput, utilization, waiting time, etc

m Computer system described as network of servers, each with
gueue of waiting processes

e Knowing arrival rates and service rates

e Computes utilization, average queue length, average wait
time, etc

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.63

o Little’ s Formula

n = average gueue length
W = average waiting time in queue
A = average arrival rate into queue

Little’ s law — in steady state, processes leaving queue must equal
processes arriving, thus:
nN=AxW

e Valid for any scheduling algorithm and arrival distribution

m For example, if on average 7 processes arrive per second, and
normally 14 processes in queue, then average wait time per
process = 2 seconds

Operating System Concepts Essentials — 2" Edition 6.64 Silberschatz, Galvin and Gagne ©2013

=

oy . .
r o Simulations

B Queueing models limited
® Simulations more accurate
e Programmed model of computer system
e Clock is a variable
e Gather statistics indicating algorithm performance
e Data to drive simulation gathered via
» Random number generator according to probabilities
» Distributions defined mathematically or empirically
» Trace tapes record sequences of real events in real systems

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 6.65

=™

‘mfgv—j Evaluation of CPU Schedulers by Simulation

/0 213

tual CPU 12
process /0 112
execution CPU 2
/0 147

CPU 173

trace tape

Operating System Concepts Essentials — 2"d Edition

simulation

FCFS

simulation

SJF

simulation

RR (g = 14)

6.66

performance
statistics
for FCFS

performance
statistics
for SJF

performance
statistics
for RR (g = 14)

“

Silberschatz, Galvin and Gagne ©2013

pi
!'}‘r

g T Implementation

®m Even simulations have limited accuracy
®m Just implement new scheduler and test in real systems
m High cost, high risk
B Environments vary
m Most flexible schedulers can be modified per-site or per-system
®m Or APIs to modify priorities
® But again environments vary

Operating System Concepts Essentials — 2" Edition 6.67 Silberschatz, Galvin and Gagne ©2013

End of Chapter 6

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 6: CPU Scheduling
	Chapter 6: CPU Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First- Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multiple-Processor Scheduling – Load Balancing
	Multicore Processors
	Multithreaded Multicore System
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling (Cont.)
	Priority-based Scheduling
	Virtualization and Scheduling
	Rate Montonic Scheduling
	Missed Deadlines with Rate Monotonic Scheduling
	Earliest Deadline First Scheduling (EDF)
	Proportional Share Scheduling
	POSIX Real-Time Scheduling
	POSIX Real-Time Scheduling API
	POSIX Real-Time Scheduling API (Cont.)
	Operating System Examples
	Linux Scheduling Through Version 2.5
	Linux Scheduling in Version 2.6.23 +
	CFS Performance
	Linux Scheduling (Cont.)
	Windows Scheduling
	Windows Priority Classes
	Windows Priority Classes (Cont.)
	Windows Priorities
	Solaris
	Solaris Dispatch Table
	Solaris Scheduling
	Solaris Scheduling (Cont.)
	Algorithm Evaluation
	Deterministic Evaluation
	Queueing Models
	Little’s Formula
	Simulations
	Evaluation of CPU Schedulers by Simulation
	Implementation
	End of Chapter 6

