
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 13: Protection

13.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 13: Protection

 Goals of Protection
 Principles of Protection
 Domain of Protection
 Access Matrix
 Implementation of Access Matrix
 Access Control
 Revocation of Access Rights
 Capability-Based Systems
 Language-Based Protection

13.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 Discuss the goals and principles of protection in a modern
computer system

 Explain how protection domains combined with an access
matrix are used to specify the resources a process may
access

 Examine capability and language-based protection systems

13.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Goals of Protection

 In one protection model, computer consists of a collection of
objects, hardware or software

 Each object has a unique name and can be accessed through
a well-defined set of operations

 Protection problem - ensure that each object is accessed
correctly and only by those processes that are allowed to do so

13.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Principles of Protection

 Guiding principle – principle of least privilege
 Programs, users and systems should be given just

enough privileges to perform their tasks
 Limits damage if entity has a bug, gets abused
 Can be static (during life of system, during life of

process)
 Or dynamic (changed by process as needed) – domain

switching, privilege escalation
 “Need to know” a similar concept regarding access to

data

13.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Principles of Protection (Cont.)

 Must consider “grain” aspect
 Rough-grained privilege management easier, simpler,

but least privilege now done in large chunks
 For example, traditional Unix processes either have

abilities of the associated user, or of root
 Fine-grained management more complex, more

overhead, but more protective
 File ACL lists, RBAC

 Domain can be user, process, procedure

13.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Domain Structure

 Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations that can
be performed on the object

 Domain = set of access-rights

13.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Domain Implementation (UNIX)

 Domain = user-id

 Domain switch accomplished via file system
 Each file has associated with it a domain bit (setuid bit)
When file is executed and setuid = on, then user-id is

set to owner of the file being executed
 When execution completes user-id is reset

 Domain switch accomplished via passwords
 su command temporarily switches to another user’s

domain when other domain’s password provided

 Domain switching via commands
 sudo command prefix executes specified command in

another domain (if original domain has privilege or
password given)

13.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Domain Implementation (MULTICS)

 Let Di and Dj be any two domain rings
 If j < I ⇒ Di ⊆ Dj

13.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multics Benefits and Limits

 Ring / hierarchical structure provided more than the basic
kernel / user or root / normal user design

 Fairly complex -> more overhead
 But does not allow strict need-to-know

 Object accessible in Dj but not in Di, then j must be < i
 But then every segment accessible in Di also

accessible in Dj

13.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Matrix

 View protection as a matrix (access matrix)

 Rows represent domains

 Columns represent objects

 Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

13.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj, then
“op” must be in the access matrix

 User who creates object can define access column for that
object

 Can be expanded to dynamic protection
 Operations to add, delete access rights
 Special access rights:

 owner of Oi
 copy op from Oi to Oj (denoted by “*”)
 control – Di can modify Dj access rights
 transfer – switch from domain Di to Dj

 Copy and Owner applicable to an object
 Control applicable to domain object

13.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Use of Access Matrix (Cont.)

 Access matrix design separates mechanism from policy
 Mechanism

 Operating system provides access-matrix + rules
 If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly enforced
 Policy

 User dictates policy
Who can access what object and in what mode

 But doesn’t solve the general confinement problem

13.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Matrix of Figure A with Domains as Objects

13.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Matrix with Copy Rights

13.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Matrix With Owner Rights

13.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Modified Access Matrix of Figure B

13.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation of Access Matrix

 Generally, a sparse matrix
 Option 1 – Global table

 Store ordered triples <domain, object,
rights-set> in table

 A requested operation M on object Oj within domain
Di -> search table for < Di, Oj, Rk >
 with M ∈ Rk

 But table could be large -> won’t fit in main memory
 Difficult to group objects (consider an object that all

domains can read)

13.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation of Access Matrix (Cont.)

 Option 2 – Access lists for objects
 Each column implemented as an access list for one

object
 Resulting per-object list consists of ordered pairs

<domain, rights-set> defining all domains with
non-empty set of access rights for the object

 Easily extended to contain default set -> If M ∈ default
set, also allow access

13.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation of Access Matrix (Cont.)

 Each column = Access-control list for one object
Defines who can perform what operation

 Domain 1 = Read, Write
 Domain 2 = Read
 Domain 3 = Read

 Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read
Object F4 – Read, Write, Execute
Object F5 – Read, Write, Delete, Copy

13.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation of Access Matrix (Cont.)

 Option 3 – Capability list for domains
 Instead of object-based, list is domain based
 Capability list for domain is list of objects together with operations

allows on them
 Object represented by its name or address, called a capability
 Execute operation M on object Oj, process requests operation and

specifies capability as parameter
 Possession of capability means access is allowed

 Capability list associated with domain but never directly accessible
by domain
 Rather, protected object, maintained by OS and accessed

indirectly
 Like a “secure pointer”
 Idea can be extended up to applications

13.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation of Access Matrix (Cont.)

 Option 4 – Lock-key
 Compromise between access lists and capability lists
 Each object has list of unique bit patterns, called locks
 Each domain as list of unique bit patterns called keys
 Process in a domain can only access object if domain

has key that matches one of the locks

13.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Comparison of Implementations

 Many trade-offs to consider
 Global table is simple, but can be large
 Access lists correspond to needs of users

 Determining set of access rights for domain non-
localized so difficult

 Every access to an object must be checked
– Many objects and access rights -> slow

 Capability lists useful for localizing information for a given
process
 But revocation capabilities can be inefficient

 Lock-key effective and flexible, keys can be passed freely
from domain to domain, easy revocation

13.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Comparison of Implementations (Cont.)

 Most systems use combination of access lists and
capabilities
 First access to an object -> access list searched

 If allowed, capability created and attached to
process

– Additional accesses need not be checked
 After last access, capability destroyed
 Consider file system with ACLs per file

13.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Access Control

 Protection can be applied to non-file
resources

 Oracle Solaris 10 provides role-
based access control (RBAC) to
implement least privilege
 Privilege is right to execute

system call or use an option
within a system call

 Can be assigned to processes
 Users assigned roles granting

access to privileges and
programs
 Enable role via password to

gain its privileges
 Similar to access matrix

13.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Revocation of Access Rights

 Various options to remove the access right of a domain to an
object
 Immediate vs. delayed
 Selective vs. general
 Partial vs. total
 Temporary vs. permanent

 Access List – Delete access rights from access list
 Simple – search access list and remove entry
 Immediate, general or selective, total or partial,

permanent or temporary

13.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Revocation of Access Rights (Cont.)

 Capability List – Scheme required to locate capability in the
system before capability can be revoked
 Reacquisition – periodic delete, with require and denial if

revoked
 Back-pointers – set of pointers from each object to all

capabilities of that object (Multics)
 Indirection – capability points to global table entry which points

to object – delete entry from global table, not selective (CAL)
 Keys – unique bits associated with capability, generated when

capability created
Master key associated with object, key matches master key

for access
 Revocation – create new master key
 Policy decision of who can create and modify keys – object

owner or others?

13.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Capability-Based Systems

 Hydra
 Fixed set of access rights known to and interpreted by the system

 i.e. read, write, or execute each memory segment
 User can declare other auxiliary rights and register those with

protection system
 Accessing process must hold capability and know name of

operation
 Rights amplification allowed by trustworthy procedures for a

specific type
 Interpretation of user-defined rights performed solely by user's

program; system provides access protection for use of these rights
 Operations on objects defined procedurally – procedures are

objects accessed indirectly by capabilities
 Solves the problem of mutually suspicious subsystems
 Includes library of prewritten security routines

13.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Capability-Based Systems (Cont.)

 Cambridge CAP System
 Simpler but powerful
 Data capability - provides standard read, write, execute

of individual storage segments associated with object –
implemented in microcode

 Software capability -interpretation left to the
subsystem, through its protected procedures
 Only has access to its own subsystem
 Programmers must learn principles and techniques

of protection

13.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Language-Based Protection

 Specification of protection in a programming language
allows the high-level description of policies for the
allocation and use of resources

 Language implementation can provide software for
protection enforcement when automatic hardware-
supported checking is unavailable

 Interpret protection specifications to generate calls on
whatever protection system is provided by the hardware
and the operating system

13.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Protection in Java 2

 Protection is handled by the Java Virtual Machine (JVM)
 A class is assigned a protection domain when it is loaded by

the JVM
 The protection domain indicates what operations the class

can (and cannot) perform
 If a library method is invoked that performs a privileged

operation, the stack is inspected to ensure the operation can
be performed by the library

 Generally, Java’s load-time and run-time checks enforce type
safety

 Classes effectively encapsulate and protect data and
methods from other classes

13.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Stack Inspection

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 13

	Chapter 13: Protection
	Chapter 13: Protection
	Objectives
	Goals of Protection
	Principles of Protection
	Principles of Protection (Cont.)
	Domain Structure
	Domain Implementation (UNIX)
	Domain Implementation (MULTICS)
	Multics Benefits and Limits
	Access Matrix
	Use of Access Matrix
	Use of Access Matrix (Cont.)
	Access Matrix of Figure A with Domains as Objects
	Access Matrix with Copy Rights
	Access Matrix With Owner Rights
	Modified Access Matrix of Figure B
	Implementation of Access Matrix
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Implementation of Access Matrix (Cont.)
	Comparison of Implementations
	Comparison of Implementations (Cont.)
	Access Control
	Revocation of Access Rights
	Revocation of Access Rights (Cont.)
	Capability-Based Systems
	Capability-Based Systems (Cont.)
	Language-Based Protection
	Protection in Java 2
	Stack Inspection
	End of Chapter 13

