
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 6: CPU Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 6: CPU Scheduling

 Basic Concepts
 Scheduling Criteria
 Scheduling Algorithms
 Thread Scheduling
 Multiple-Processor Scheduling
 Real-Time CPU Scheduling
 Operating Systems Examples
 Algorithm Evaluation

6.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 To introduce CPU scheduling, which is the basis for
multiprogrammed operating systems

 To describe various CPU-scheduling algorithms
 To discuss evaluation criteria for selecting a CPU-scheduling

algorithm for a particular system
 To examine the scheduling algorithms of several operating

systems

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Basic Concepts

 Maximum CPU utilization
obtained with multiprogramming

 CPU–I/O Burst Cycle – Process
execution consists of a cycle of
CPU execution and I/O wait

 CPU burst followed by I/O burst
 CPU burst distribution is of main

concern

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Histogram of CPU-burst Times

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

CPU Scheduler

 Short-term scheduler selects from among the processes in
ready queue, and allocates the CPU to one of them
 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

 Consider access to shared data
 Consider preemption while in kernel mode
 Consider interrupts occurring during crucial OS activities

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
 switching context
 switching to user mode
 jumping to the proper location in the user program to

restart that program
 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible
 Throughput – # of processes that complete their execution per

time unit
 Turnaround time – amount of time to execute a particular

process
 Waiting time – amount of time a process has been waiting in the

ready queue
 Response time – amount of time it takes from when a request

was submitted until the first response is produced, not output (for
time-sharing environment)

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization
 Max throughput
 Min turnaround time
 Min waiting time
 Min response time

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

First- Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P2 , P3 , P1
 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case
 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P1

0 3 6 30

P2 P3

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst
 Use these lengths to schedule the process with the shortest

time
 SJF is optimal – gives minimum average waiting time for a given

set of processes
 The difficulty is knowing the length of the next CPU request
 Could ask the user

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of SJF

 ProcessArrival Time Burst Time
 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P3

0 3 24

P4 P1

169

P2

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one
 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½
 Preemptive version called shortest-remaining-time-first

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .1 1 nnn t ταατ −+==

6.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Prediction of the Length of the Next CPU Burst

6.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Examples of Exponential Averaging

 α =0
 τn+1 = τn

 Recent history does not count
 α =1

 τn+1 = α tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …
 +(1 - α)j α tn -j + …
 +(1 - α)n +1 τ0

 Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

6.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of Shortest-remaining-time-first

 Now we add the concepts of varying arrival times and preemption to
the analysis

 ProcessAarri Arrival TimeT Burst Time
 P1 0 8
 P2 1 4
 P3 2 9
 P4 3 5
 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5

msec

P4

0 1 26

P1 P2

10

P3P1

5 17

6.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
 Preemptive
 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

 Problem ≡ Starvation – low priority processes may never execute

 Solution ≡ Aging – as time progresses increase the priority of the
process

6.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec

1

0 1 19

P1 P2

16

P4P3

6 18

P

6.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

 Timer interrupts every quantum to schedule next process
 Performance

 q large ⇒ FIFO
 q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high

6.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3
 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time
 q usually 10ms to 100ms, context switch < 10 usec

P P P1 1 1

0 18 3026144 7 10 22

P2 P3 P1 P1 P1

6.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Time Quantum and Context Switch Time

6.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

6.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:
 foreground (interactive)
 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues:
 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

 20% to background in FCFS

6.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multilevel Queue Scheduling

6.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be
implemented this way

 Multilevel-feedback-queue scheduler defined by the following
parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a process
 method used to determine when to demote a process
 method used to determine which queue a process will enter

when that process needs service

6.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Example of Multilevel Feedback Queue

 Three queues:
 Q0 – RR with time quantum 8

milliseconds
 Q1 – RR time quantum 16 milliseconds
 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is

served FCFS
 When it gains CPU, job receives 8

milliseconds
 If it does not finish in 8

milliseconds, job is moved to
queue Q1

 At Q1 job is again served FCFS and
receives 16 additional milliseconds
 If it still does not complete, it is

preempted and moved to queue Q2

6.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads
 When threads supported, threads scheduled, not processes
 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP
 Known as process-contention scope (PCS) since scheduling

competition is within the process
 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention
scope (SCS) – competition among all threads in system

6.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation
 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling
 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling
 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;
 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */
 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else
 fprintf(stderr, "Illegal scope value.\n");

 }

6.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)
{

 /* do some work ... */

 pthread_exit(0);

}

6.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are
available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses
the system data structures, alleviating the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-
scheduling, all processes in common ready queue, or each has
its own private queue of ready processes
 Currently, most common

 Processor affinity – process has affinity for processor on which
it is currently running
 soft affinity
 hard affinity
 Variations including processor sets

6.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

6.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency
 Load balancing attempts to keep workload evenly distributed
 Push migration – periodic task checks load on each processor,

and if found pushes task from overloaded CPU to other CPUs
 Pull migration – idle processors pulls waiting task from busy

processor

6.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Processors

 Recent trend to place multiple processor cores on same
physical chip

 Faster and consumes less power
 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

6.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multithreaded Multicore System

6.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Real-Time CPU Scheduling

 Can present obvious
challenges

 Soft real-time systems – no
guarantee as to when critical
real-time process will be
scheduled

 Hard real-time systems –
task must be serviced by its
deadline

 Two types of latencies affect
performance

1. Interrupt latency – time from
arrival of interrupt to start of
routine that services interrupt

2. Dispatch latency – time for
schedule to take current process
off CPU and switch to another

6.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Real-Time CPU Scheduling (Cont.)

 Conflict phase of
dispatch latency:

1. Preemption of
any process
running in kernel
mode

2. Release by low-
priority process
of resources
needed by high-
priority
processes

6.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Priority-based Scheduling

 For real-time scheduling, scheduler must support preemptive, priority-
based scheduling
 But only guarantees soft real-time

 For hard real-time must also provide ability to meet deadlines
 Processes have new characteristics: periodic ones require CPU at

constant intervals
 Has processing time t, deadline d, period p
 0 ≤ t ≤ d ≤ p
 Rate of periodic task is 1/p

6.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Virtualization and Scheduling

 Virtualization software schedules multiple guests onto
CPU(s)

 Each guest doing its own scheduling
 Not knowing it doesn’t own the CPUs
 Can result in poor response time
 Can effect time-of-day clocks in guests

 Can undo good scheduling algorithm efforts of guests

6.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Rate Montonic Scheduling

 A priority is assigned based on the inverse of its period

 Shorter periods = higher priority;

 Longer periods = lower priority

 P1 is assigned a higher priority than P2.

6.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Missed Deadlines with Rate Monotonic Scheduling

6.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Earliest Deadline First Scheduling (EDF)

 Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;

 the later the deadline, the lower the priority

6.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Proportional Share Scheduling

 T shares are allocated among all processes in the system

 An application receives N shares where N < T

 This ensures each application will receive N / T of the total
processor time

6.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

POSIX Real-Time Scheduling

 The POSIX.1b standard
 API provides functions for managing real-time threads
 Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a
FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for
threads of equal priority

 Defines two functions for getting and setting scheduling policy:
1. pthread_attr_getsched_policy(pthread_attr_t *attr,

int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,
int policy)

6.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

POSIX Real-Time Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

 int i, policy;
 pthread_t_tid[NUM_THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* get the current scheduling policy */
 if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

 fprintf(stderr, "Unable to get policy.\n");

 else {

 if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");

 else if (policy == SCHED_RR) printf("SCHED_RR\n");

 else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");

 }

6.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

POSIX Real-Time Scheduling API (Cont.)

 /* set the scheduling policy - FIFO, RR, or OTHER */
 if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

 fprintf(stderr, "Unable to set policy.\n");

 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)
{

 /* do some work ... */

 pthread_exit(0);

}

6.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Operating System Examples

 Linux scheduling

 Windows scheduling

 Solaris scheduling

6.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Linux Scheduling Through Version 2.5

 Prior to kernel version 2.5, ran variation of standard UNIX
scheduling algorithm

 Version 2.5 moved to constant order O(1) scheduling time
 Preemptive, priority based
 Two priority ranges: time-sharing and real-time
 Real-time range from 0 to 99 and nice value from 100 to 140
 Map into global priority with numerically lower values indicating higher

priority
 Higher priority gets larger q
 Task run-able as long as time left in time slice (active)
 If no time left (expired), not run-able until all other tasks use their slices
 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)
 Tasks indexed by priority
 When no more active, arrays are exchanged

 Worked well, but poor response times for interactive processes

6.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Linux Scheduling in Version 2.6.23 +

 Completely Fair Scheduler (CFS)
 Scheduling classes

 Each has specific priority
 Scheduler picks highest priority task in highest scheduling class
 Rather than quantum based on fixed time allotments, based on proportion of CPU

time
 2 scheduling classes included, others can be added

1. default
2. real-time

 Quantum calculated based on nice value from -20 to +19
 Lower value is higher priority
 Calculates target latency – interval of time during which task should run at least

once
 Target latency can increase if say number of active tasks increases

 CFS scheduler maintains per task virtual run time in variable vruntime
 Associated with decay factor based on priority of task – lower priority is higher

decay rate
 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual run time

6.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

CFS Performance

6.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b
 Real-time tasks have static priorities

 Real-time plus normal map into global priority scheme
 Nice value of -20 maps to global priority 100
 Nice value of +19 maps to priority 139

6.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Scheduling

 Windows uses priority-based preemptive scheduling
 Highest-priority thread runs next
 Dispatcher is scheduler
 Thread runs until (1) blocks, (2) uses time slice, (3)

preempted by higher-priority thread
 Real-time threads can preempt non-real-time
 32-level priority scheme
 Variable class is 1-15, real-time class is 16-31
 Priority 0 is memory-management thread
 Queue for each priority
 If no run-able thread, runs idle thread

6.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Priority Classes

 Win32 API identifies several priority classes to which a process can belong
 REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

 All are variable except REALTIME

 A thread within a given priority class has a relative priority
 TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, BELOW_NORMAL,

LOWEST, IDLE

 Priority class and relative priority combine to give numeric priority
 Base priority is NORMAL within the class
 If quantum expires, priority lowered, but never below base

6.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Priority Classes (Cont.)

 If wait occurs, priority boosted depending on what was waited for
 Foreground window given 3x priority boost
 Windows 7 added user-mode scheduling (UMS)

 Applications create and manage threads independent of kernel
 For large number of threads, much more efficient
 UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

6.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Windows Priorities

6.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris

 Priority-based scheduling
 Six classes available

 Time sharing (default) (TS)
 Interactive (IA)
 Real time (RT)
 System (SYS)
 Fair Share (FSS)
 Fixed priority (FP)

 Given thread can be in one class at a time
 Each class has its own scheduling algorithm
 Time sharing is multi-level feedback queue

 Loadable table configurable by sysadmin

6.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris Dispatch Table

6.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris Scheduling

6.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Solaris Scheduling (Cont.)

 Scheduler converts class-specific priorities into a per-thread global
priority
 Thread with highest priority runs next
 Runs until (1) blocks, (2) uses time slice, (3) preempted by

higher-priority thread
 Multiple threads at same priority selected via RR

6.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Algorithm Evaluation

 How to select CPU-scheduling algorithm for an OS?
 Determine criteria, then evaluate algorithms
 Deterministic modeling

 Type of analytic evaluation
 Takes a particular predetermined workload and defines the

performance of each algorithm for that workload
 Consider 5 processes arriving at time 0:

6.62 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Deterministic Evaluation

 For each algorithm, calculate minimum average waiting time
 Simple and fast, but requires exact numbers for input, applies only to

those inputs
 FCS is 28ms:

 Non-preemptive SFJ is 13ms:

 RR is 23ms:

6.63 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Queueing Models

 Describes the arrival of processes, and CPU and I/O bursts
probabilistically
 Commonly exponential, and described by mean
 Computes average throughput, utilization, waiting time, etc

 Computer system described as network of servers, each with
queue of waiting processes
 Knowing arrival rates and service rates
 Computes utilization, average queue length, average wait

time, etc

6.64 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Little’s Formula

 n = average queue length
 W = average waiting time in queue
 λ = average arrival rate into queue
 Little’s law – in steady state, processes leaving queue must equal

processes arriving, thus:
 n = λ x W
 Valid for any scheduling algorithm and arrival distribution

 For example, if on average 7 processes arrive per second, and
normally 14 processes in queue, then average wait time per
process = 2 seconds

6.65 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Simulations

 Queueing models limited
 Simulations more accurate

 Programmed model of computer system
 Clock is a variable
 Gather statistics indicating algorithm performance
 Data to drive simulation gathered via

 Random number generator according to probabilities
 Distributions defined mathematically or empirically
 Trace tapes record sequences of real events in real systems

6.66 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Evaluation of CPU Schedulers by Simulation

6.67 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Implementation

 Even simulations have limited accuracy
 Just implement new scheduler and test in real systems

 High cost, high risk
 Environments vary

 Most flexible schedulers can be modified per-site or per-system
 Or APIs to modify priorities
 But again environments vary

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 6

	Chapter 6: CPU Scheduling
	Chapter 6: CPU Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First- Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Example of Shortest-remaining-time-first
	Priority Scheduling
	Example of Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multiple-Processor Scheduling – Load Balancing
	Multicore Processors
	Multithreaded Multicore System
	Real-Time CPU Scheduling
	Real-Time CPU Scheduling (Cont.)
	Priority-based Scheduling
	Virtualization and Scheduling
	Rate Montonic Scheduling
	Missed Deadlines with Rate Monotonic Scheduling
	Earliest Deadline First Scheduling (EDF)
	Proportional Share Scheduling
	POSIX Real-Time Scheduling
	POSIX Real-Time Scheduling API
	POSIX Real-Time Scheduling API (Cont.)
	Operating System Examples
	Linux Scheduling Through Version 2.5
	Linux Scheduling in Version 2.6.23 +
	CFS Performance
	Linux Scheduling (Cont.)
	Windows Scheduling
	Windows Priority Classes
	Windows Priority Classes (Cont.)
	Windows Priorities
	Solaris
	Solaris Dispatch Table
	Solaris Scheduling
	Solaris Scheduling (Cont.)
	Algorithm Evaluation
	Deterministic Evaluation
	Queueing Models
	Little’s Formula
	Simulations
	Evaluation of CPU Schedulers by Simulation
	Implementation
	End of Chapter 6

