Chapter 3. Processes
-] -]

Operating System Concepts Essentials — 2" Edition Silberschatz, Galvin and Gagne ©2013

S Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts Essentials — 2" Edition 3.2 Silberschatz, Galvin and Gagne ©2013

N

s,

) el : '
o Objectives

® To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

® To describe the various features of processes, including
scheduling, creation and termination, and communication

m To explore interprocess communication using shared memory
and message passing

B To describe communication in client-server systems

Operating System Concepts Essentials — 2" Edition 3.3 Silberschatz, Galvin and Gagne ©2013

N

s,

P

g5 Process Concept

B An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
m Textbook uses the terms job and process almost interchangeably

B Process — a program in execution; process execution must
progress in sequential fashion

m Multiple parts
e The program code, also called text section

e Current activity including program counter, processor
registers

e Stack containing temporary data
» Function parameters, return addresses, local variables
e Data section containing global variables

e Heap containing memory dynamically allocated during run time

Operating System Concepts Essentials — 2" Edition 3.4 Silberschatz, Galvin and Gagne ©2013

BN

s

ﬁﬁ-%l

G Process Concept (Cont.)

® Program is passive entity stored on disk (executable file),
process is active

e Program becomes process when executable file loaded into
memory

m Execution of program started via GUI mouse clicks, command
line entry of its name, etc

® One program can be several processes
e Consider multiple users executing the same program

Operating System Concepts Essentials — 2" Edition 35 Silberschatz, Galvin and Gagne ©2013

G Process in Memory

maXx

stack

heap

data

text

“

Operating System Concepts Essentials — 2" Edition 3.6 Silberschatz, Galvin and Gagne ©2013

i Process State

m As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.7

»

N Diagram of Process State

admitted interrupt exit

terminated

scheduler dispatch

I/O or event completion I/O or event wait

“

Operating System Concepts Essentials — 2" Edition 3.8 Silberschatz, Galvin and Gagne ©2013

(\\T""":xk w /

=y
-

=
e

Process Control Block (PCB)

Information associated with each process

(also called task control block)

Process state — running, waiting, etc

Program counter — location of
instruction to next execute

CPU registers — contents of all process-
centric registers

CPU scheduling information- priorities,
scheduling queue pointers

Memory-management information —
memory allocated to the process

Accounting information — CPU used,
clock time elapsed since start, time
limits

I/O status information — 1/O devices
allocated to process, list of open files

Operating System Concepts Essentials — 2" Edition 3.9

process state

process number

program counter

reqgisters

memory limits

list of open files

ot WY
- /‘%; S
4 ‘tk‘;_-f'
“ <0 g

Silberschatz, Galvin and Gagne ©2013

£

&w‘;—"i CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing J /
h J ™
save state into PCB,
. - idle
reload state from PCB, 1
>idle interrupt or system call executing
N
save state into PCB,
> idle
) reload state from PCB, J
executing | _‘¥
Y

Operating System Concepts Essentials — 2" Edition 3.10 Silberschatz, Galvin and Gagne ©2013

pi
!'}‘r

P hreads

B So far, process has a single thread of execution
m Consider having multiple program counters per process
e Multiple locations can execute at once
» Multiple threads of control -> threads

® Must then have storage for thread details, multiple program
counters in PCB

m See next chapter

Operating System Concepts Essentials — 2" Edition 3.11 Silberschatz, Galvin and Gagne ©2013

=

S
o "'?'-"?'.\-1

(“ﬁ%’p— /

Process Representation in Linux

Represented by the C structure task struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */
struct task struct *parent; /* this process’s parent */
struct list _head children; /* this process’s children */
struct files struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

ah'

NN

struct task_struct
process information

struct task_struct
process information

struct task_struct
process information

~_

1

current

L g

{(currently executing proccess)

Operating System Concepts Essentials — 2" Edition

3.12

Silberschatz, Galvin and Gagne ©2013

(P> Process Scheduling

®m Maximize CPU use, quickly switch processes onto CPU for
time sharing

m Process scheduler selects among available processes for
next execution on CPU

B Maintains scheduling queues of processes
e Job queue — set of all processes in the system

e Ready gueue — set of all processes residing in main
memory, ready and waiting to execute

e Device queues — set of processes waiting for an 1/0O device
e Processes migrate among the various queues

Operating System Concepts Essentials — 2" Edition 3.13 Silberschatz, Galvin and Gagne ©2013

Ready Queue And Various I/O Device Queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

PCB,

PCB,,

registers

PCB,

) 4

Operating System Concepts Essentials — 2"d Edition

queue header PCB,
head »
tail registers
L]
L]
head T——=
tail ——=
head T——=
Tl _7 PCB,
head 1
PCB;
head —T—> -
@il |
L]
®
3.14

Al

Silberschatz, Galvin and Gagne ©2013

?

. "W""‘J

«$»7 Representation of Process Scheduling

4

®m Queueing diagram represents queues, resources, flows

_i ready queue CPU >
/O queue *—— /O request [——
time slice E
expired
child fork a
@i child ‘
interrupt wait for an
OCCUrs interrupt

Operating System Concepts Essentials — 2" Edition 3.15 Silberschatz, Galvin and Gagne ©2013

N

s,

1
gF Schedulers

&

m Short-term scheduler (or CPU scheduler) — selects which process should
be executed next and allocates CPU

e Sometimes the only scheduler in a system

e Short-term scheduler is invoked frequently (milliseconds) = (must be
fast)

m Long-term scheduler (or job scheduler) — selects which processes should
be brought into the ready queue

e Long-term scheduler is invoked infrequently (seconds, minutes) =
(may be slow)

e The long-term scheduler controls the degree of multiprogramming
® Processes can be described as either:

e |/O-bound process — spends more time doing I/O than computations,
many short CPU bursts

e CPU-bound process — spends more time doing computations; few very
long CPU bursts

B Long-term scheduler strives for good process mix

Operating System Concepts Essentials — 2" Edition 3.16 Silberschatz, Galvin and Gagne ©2013

PN

S ~ Addition of Medium Term Scheduling

®m Medium-term scheduler can be added if degree of multiple

programming needs to decrease

e Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

swap in partially executed

swapped-out processes

swap out

» ready queue

@} » end

I/O waiting
queues

Operating System Concepts Essentials — 2" Edition 3.17

Silberschatz, Galvin and Gagne ©2013

]

1-.-:;

-

o Multitasking in Mobile Systems

® Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

B Due to screen real estate, user interface limits iOS provides for a
e Single foreground process- controlled via user interface

e Multiple background processes— in memory, running, but not
on the display, and with limits

e Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

® Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks

e Service can keep running even if background process is
suspended

e Service has no user interface, small memory use

Operating System Concepts Essentials — 2" Edition 3.18 Silberschatz, Galvin and Gagne ©2013

ST Context Switch

®m When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

m Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful
work while switching

e The more complex the OS and the PCB = the longer the
context switch

® Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU
=> multiple contexts loaded at once

/‘»““ -'\1

Operating System Concepts Essentials — 2" Edition 3.19 Silberschatz, Galvin and Gagne ©2013

™

iy

o Operations on Processes

B System must provide mechanisms for:
® process creation,
® process termination,
e and so on as detailed next

“

Operating System Concepts Essentials — 2" Edition 3.20 Silberschatz, Galvin and Gagne ©2013

N

s,

p— I
g T Process Creation

f 4

m Parent process create children processes, which, in turn
create other processes, forming a tree of processes

m Generally, process identified and managed via a process
identifier (pid)

B Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources
B Execution options
e Parent and children execute concurrently
e Parent waits until children terminate

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.21

Hr’ A Tree of Processes in Linux

login kthreadd sshd
pid = 8415 pid = 2 pid = 3028
bash khelper pdflush _ sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
ps emacs _ ;C_SCLI:J o5
pid = 9298 pid = 9204 pid =

Operating System Concepts Essentials — 2" Edition 3.22 Silberschatz, Galvin and Gagne ©2013

G5 Process Creation (Cont.)

m Address space
e Child duplicate of parent
e Child has a program loaded into it
m UNIX examples
e Tork() system call creates new process

e exec() system call used after a fork() to replace the
process’ memory space with a new program

parent Wit resumes

child ' exec() »

Operating System Concepts Essentials — 2"d Edition 3.23 Silberschatz, Galvin and Gagne ©2013

™

m';‘ﬁ C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

pid t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed"):
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s",NULL) ;

}

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

}

Operating System Concepts Essentials — 2"d Edition 3.24 Silberschatz, Galvin and Gagne ©2013

| (=
&f.f;;;‘ﬁ Creating a Separate Process via Windows API

#include <stdio.h>
#include <windows.h>

int main(VOID)

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (¥si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /% use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /# don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block #*/
NULL, /* use parent’s existing directory */
&si,
&pi))
{
fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject(pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

“

Operating System Concepts Essentials — 2" Edition 3.25 Silberschatz, Galvin and Gagne ©2013

J

1-.-:;

-

-7 Process Termination

B Process executes last statement and then asks the operating
system to delete it using the exit() system call.

e Returns status data from child to parent (via wait())
e Process’ resources are deallocated by operating system

m Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

e Child has exceeded allocated resources
e Task assigned to child is no longer required

e The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

i\

- 4 =
P

Wy
<hdhiy

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.26

J

1-.-:;

)

-7 Process Termination

B Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

e cascading termination. All children, grandchildren, etc. are
terminated.

e The termination is initiated by the operating system.

m The parent process may wait for termination of a child process by
using the wart()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
®m If no parent waiting (did not invoke wait()) process is a zombie
m [f parent terminated without invoking wait, process is an orphan

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 3.27 Silberschatz, Galvin and Gagne ©2013

=

VR N : .
«$»/ Multiprocess Architecture — Chrome Browser

® Many web browsers ran as single process (some still do)
e If one web site causes trouble, entire browser can hang or crash

m Google Chrome Browser is multiprocess with 3 different types of
processes:

e Browser process manages user interface, disk and network 1/O

e Renderer process renders web pages, deals with HTML,
Javascript. A new renderer created for each website opened

» Runs in sandbox restricting disk and network 1/0O, minimizing
effect of security exploits

e Plug-in process for each type of plug-in

m =
A) @Uﬂley;;(}p&ratlng System Co (@ BBC - Homepage E The New York Times - Brea! ﬂ' Google Chrome - The web

€3 C 0 W.google,cm*\hrome.hn{I_-"enfma*_-’down\oad—mac.html?brand:t?l{z /' wiR

| \ | /
19 Chrome Downldad Features “English [=2]

Each tab represents a separate process

Operating System Concepts Essentials — 2" Edition 3.28 Silberschatz, Galvin and Gagne ©2013

?

N

g Interprocess Communication

&

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:

e Information sharing

e Computation speedup

e Modularity

e Convenience
m Cooperating processes need interprocess communication (IPC)
®m Two models of IPC

e Shared memory

e Message passing

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.29

Ry

gﬁﬁq

> Communications Models

(a) Message passing.

(b) shared memory.

process A

process B

mesSage queue

—>m0 m1 m2 m3 mn<—
kernel
kernel
(a) (b)

Operating System Concepts Essentials — 2" Edition

process A

L

shared memory :I
process B

3.30

f‘ﬁ;w

Silberschatz, Galvin and Gagne ©2013

A
¥

r & Cooperating Processes

B Independent process cannot affect or be affected by the execution
of another process

m Cooperating process can affect or be affected by the execution of
another process

m Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

Operating System Concepts Essentials — 2" Edition 3.31 Silberschatz, Galvin and Gagne ©2013

=

“$7” Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

Process

e unbounded-buffer places no practical limit on the size
of the buffer

e bounded-buffer assumes that there is a fixed buffer
size

bR
S e S\
' \
“L =)

Operating System Concepts Essentials — 2" Edition 3.32 Silberschatz, Galvin and Gagne ©2013

=™

: ,ftmj S]
%-;w/ Bounded-Buffer — Shared-Memory Solution

m Shared data
#define BUFFER_SIZE 10

typedef struct {

} 1tem;

item buffer[BUFFER_SIZE];
int in = 0;

int out = 0O;

®m Solution is correct, but can only use BUFFER_SIZE-1 elements

Operating System Concepts Essentials — 2" Edition 3.33 Silberschatz, Galvin and Gagne ©2013

ot Bounded-Buffer — Producer

item next_produced,;
while (true) {
[* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)
; [* do nothing */
buffer[in] = next_produced,;
in = (in + 1) % BUFFER_SIZE;

Operating System Concepts Essentials — 2" Edition 3.34 Silberschatz, Galvin and Gagne ©2013

/=

“$»7 Bounded Buffer — Consumer

1tem next _consumed;

while (true) {
while (in == out)

; /* do nothing */
next _consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the 1tem In next consumed */

Operating System Concepts Essentials — 2" Edition 3.35 Silberschatz, Galvin and Gagne ©2013

g%’ Interprocess Communication — Shared Memory

B An area of memory shared among the processes that wish
to communicate

® The communication is under the control of the users
processes not the operating system.

B Major issues is to provide mechanism that will allow the
user processes to synchronize their actions when they
access shared memory.

® Synchronization is discussed in great details in Chapter 5.

Operating System Concepts Essentials — 2" Edition 3.36 Silberschatz, Galvin and Gagne ©2013

=

f N

%7 Interprocess Communication — Message Passing

4

® Mechanism for processes to communicate and to synchronize
their actions

B Message system — processes communicate with each other
without resorting to shared variables

m |PC facility provides two operations:
e send(message)
e receive(message)

B The message size is either fixed or variable

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.37

J

1-1:;
o "'?‘-’"?'3-1

Message Passing (Cont.)

m |f processes P and Q wish to communicate, they need to:

Establish a communication link between them
Exchange messages via send/receive

B [mplementation issues:

Operating System Concepts Essentials — 2" Edition

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bi-directional?

3.38 Silberschatz, Galvin and Gagne ©2013

7 Message Passing (Cont.)

® [mplementation of communication link
e Physical:
» Shared memory
» Hardware bus
» Network
e Logical:
» Direct or indirect
» Synchronous or asynchronous
» Automatic or explicit buffering

Operating System Concepts Essentials — 2" Edition 3.39

Silberschatz, Galvin and Gagne ©2013

=

5,
,f‘.w"?‘l
T

g T Direct Communication

® Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q

® Properties of communication link
e Links are established automatically

e Alink is associated with exactly one pair of communicating
processes

e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.40

=

57 Indirect Communication

m Messages are directed and received from mailboxes (also referred
to as ports)

e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox
®m Properties of communication link
e Link established only if processes share a common mailbox
e A link may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional

Operating System Concepts Essentials — 2" Edition 341 Silberschatz, Galvin and Gagne ©2013

i 4

- 3

| ,f;.ml . i I
NG T Indirect Communication

m Operations
e create a new mailbox (port)
e send and receive messages through mailbox
e destroy a mailbox
® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts Essentials — 2" Edition 3.42 Silberschatz, Galvin and Gagne ©2013

S Indirect Communication

® Mailbox sharing
e P, P,, and P; share mailbox A
e P,, sends; P, and P, receive
e Who gets the message?
m Solutions
e Allow a link to be associated with at most two processes

e Allow only one process at a time to execute a receive
operation

e Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Operating System Concepts Essentials — 2" Edition 3.43 Silberschatz, Galvin and Gagne ©2013

=

/) ' '
g Synchronization

B Message passing may be either blocking or non-blocking
m Blocking is considered synchronous

e Blocking send -- the sender is blocked until the message is
received

e Blocking receive -- the receiver is blocked until a message
Is available

®m Non-blocking is considered asynchronous

e Non-blocking send -- the sender sends the message and
continue

e Non-blocking receive -- the receiver receives:
e Avalid message, or
e Null message
m Different combinations possible

e If both send and receive are blocking, we have a rendezvous

Operating System Concepts Essentials — 2" Edition 3.44 Silberschatz, Galvin and Gagne ©2013

A

(8
,f;.-:-wv».l

- Synchronization (Cont.)

B Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an i1tem in next produced */

send(next_produced);

}

message next consumed;
while (true) {
receive(next_consumed);

/* consume the i1tem 1In next consumed */

}

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.45

oy, Buffering

B Queue of messages attached to the link.
® implemented in one of three ways

1. Zero capacity — no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts Essentials — 2" Edition 3.46 Silberschatz, Galvin and Gagne ©2013

;; Examples of IPC Systems - POSIX

m POSIX Shared Memory

e Process first creates shared memory segment
shm fd = shm open(name, O CREAT | O RDWR, 0666);

e Also used to open an existing segment to share it

e Set the size of the object
ftruncate(shm fd, 4096);

e Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared
memory'") ;

Operating System Concepts Essentials — 2" Edition 3.47 Silberschatz, Galvin and Gagne ©2013

P IPC POSIX Producer

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char #name = "(0S";

/* strings written to shared memory */

const char *message.0 = "Hello";

const char *message 1l = "World!";
/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | ORDWR, 0666);

/* configure the size of the shared memory object */
ftruncate (shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr,"%s",message 0);

ptr += strlen(message 0);

sprintf (ptr,"%s",message 1);

ptr += strlen(message 1);

return 0;

“

3.48 Silberschatz, Galvin and Gagne ©2013

}

Operating System Concepts Essentials — 2"d Edition

T IPC POSIX Consumer

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE = 4096;

/* name of the shared memory object */

const char *name = "(Q0S";

/* shared memory file descriptor */

int shm fd;

/* pointer to shared memory obect */

void *ptr;

/* open the shared memory object */
shm fd = shm open(name, 0_RDONLY, 0666);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf("%s", (char *)ptr);

/* remove the shared memory object */
shm unlink(name) ;

return 0;

}

Operating System Concepts Essentials — 2" Edition 3.49 Silberschatz, Galvin and Gagne ©2013

o]
1-1:;

«§% Examples of IPC Systems - Mach

®m Mach communication is message based
e Even system calls are messages
e Each task gets two mailboxes at creation- Kernel and Notify
e Only three system calls needed for message transfer
msg_send(), msg_receive(), msg_rpc()
e Mailboxes needed for commuication, created via
port_allocate()
e Send and receive are flexible, for example four options if mailbox full:
» Wait indefinitely
» Wait at most n milliseconds
» Return immediately
» Temporarily cache a message

\

- =S
’ﬂ“)
L e

'

s ."“

Operating System Concepts Essentials — 2" Edition 3.50 Silberschatz, Galvin and Gagne ©2013

]

1-1:;

,r"'?"-’"?'rj

o f

Examples of IPC Systems — Windows

Message-passing centric via advanced local procedure call
(LPC) facility

e Only works between processes on the same system

e Uses ports (like mailboxes) to establish and maintain
communication channels

e Communication works as follows:

» The client opens a handle to the subsystem'’s
connection port object.

» The client sends a connection request.

» The server creates two private communication ports
and returns the handle to one of them to the client.

» The client and server use the corresponding port handle
to send messages or callbacks and to listen for replies.

Operating System Concepts Essentials — 2" Edition 3.51 Silberschatz, Galvin and Gagne ©2013

£

"

g%’ Local Procedure Calls in Windows

Client

Connection
request

Server

Handle

Connection
S
Port

Handle

Client
Communication Port

14

Server
Communication Port

Handle

Operating System Concepts Essentials — 2" Edition

Shared

(< = 256 bytes)

3.52

«—— > Section Object ¢——>»

Silberschatz, Galvin and Gagne ©2013

y

iy

&«;}‘ﬁ Communications in Client-Server Systems

Sockets
Remote Procedure Calls
Pipes

Remote Method Invocation (Java)

“

Operating System Concepts Essentials — 2" Edition 3.53 Silberschatz, Galvin and Gagne ©2013

J

1-1:;

,r"'?"-’"?'rj

-7 Sockets

B A socket is defined as an endpoint for communication

m Concatenation of IP address and port — a number included at
start of message packet to differentiate network services on a
host

B The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

®m Communication consists between a pair of sockets

m All ports below 1024 are well known, used for standard
services

m Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

i > y“s“"‘; _.\;\l
o “%-(
“l 29K

Operating System Concepts Essentials — 2" Edition 3.54 Silberschatz, Galvin and Gagne ©2013

P Socket Communication
host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

“

Operating System Concepts Essentials — 21 Edition 3.55 Silberschatz, Galvin and Gagne ©2013

. _aT% mj

Sockets In Java

m Three types of sockets

e Connection-oriented
(TCP)

e Connectionless (UDP)

e MulticastSocket
class— data can be sent
to multiple recipients

®m Consider this “Date” server:

Operating System Concepts Essentials — 2" Edition

import java.net.*;
import java.io.¥;

public class DateServer

{

public static void main(String[] args) {
try {

ServerSocket sock = new ServerSocket(6013);

/* now listen for connections */
while (true) {
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

/* write the Date to the socket */
pout.println(new java.util.Date().toString());

/* close the socket and resume */
/* listening for connections */
client.close();

}

catch (IOException ioe) {
System.err.println(ioe);

}
}
}

B g

W J"‘&‘(
A DA o

3.56 Silberschatz, Galvin and Gagne ©2013

A
,;:j

> "'?‘-’"?'rj

-7 Remote Procedure Calls

®m Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems

e Again uses ports for service differentiation

B Stubs — client-side proxy for the actual procedure on the
server

B The client-side stub locates the server and marshalls the
parameters

® The server-side stub receives this message, unpacks the
marshalled parameters, and performs the procedure on the
server

® On Windows, stub code compile from specification written in
Microsoft Interface Definition Language (MIDL)

£\
. ﬂ"%;; _\\\1
.). ,%%_(

A9

Operating System Concepts Essentials — 2" Edition 3.57 Silberschatz, Galvin and Gagne ©2013

w & Remote Procedure Calls (Cont.)

m Data representation handled via External Data
Representation (XDL) format to account for different
architectures

e Big-endian and little-endian
B Remote communication has more failure scenarios than local

e Messages can be delivered exactly once rather than at
most once

m OS typically provides a rendezvous (or matchmaker) service
to connect client and server

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.58

&ﬂ;;i Execution of RPC

client messages server

user calls kernel
to send RPC
message to
procedure X

From: client
kernel sends e matchmaker
message to Pott: matchmaker receives
matchmaker to R'e' e message, looks
find port number fo.r RPC X up answer

h 4

From: server
kernel places To: client matchmaker
port Pin user Port: kernel replies to client
RPC message Re: RPC X with port P

Port: P

From: client daemon
kernel sends To: server listening to
RPC Port: port P port P receives

<gontents> message

h 4

From: RPC daemon
kernel receives Port: P processes
reply, passes To: client request and
it to user Port: kernel processes send

<outputs output

Operating System Concepts Essentials — 2" Edition 3.59 Silberschatz, Galvin and Gagne ©2013

=N

~
)

o Pipes

B Acts as a conduit allowing two processes to communicate
M |[ssues:
e |Is communication unidirectional or bidirectional?

e In the case of two-way communication, is it half or full-
duplex?

e Must there exist a relationship (i.e., parent-child) between
the communicating processes?

e Can the pipes be used over a network?

m Ordinary pipes — cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.

®m Named pipes — can be accessed without a parent-child
relationship.

N \,: \
=S
Oa

i

Operating System Concepts Essentials — 2" Edition 3.60 Silberschatz, Galvin and Gagne ©2013

SPr Ordinary Pipes

® Ordinary Pipes allow communication in standard producer-consumer
style

Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

parent child
fd[0] fd[1] fd[O] fd[1]

‘ |
L)

® Windows calls these anonymous pipes

m See Unix and Windows code samples in textbook

Operating System Concepts Essentials — 2" Edition 3.61 Silberschatz, Galvin and Gagne ©2013

&T.,:i Named Pipes

®m Named Pipes are more powerful than ordinary pipes
Communication is bidirectional

No parent-child relationship is necessary between the
communicating processes

Several processes can use the named pipe for communication
Provided on both UNIX and Windows systems

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition 3.62

End of Chapter 3

Operating System Concepts Essentials — 2" Edition Silberschatz, Galvin and Gagne ©2013

	Chapter 3: Processes
	Chapter 3: Processes
	Objectives
	Process Concept
	Process Concept (Cont.)
	Process in Memory
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	CPU Switch From Process to Process
	Threads
	Process Representation in Linux
	Process Scheduling
	Ready Queue And Various I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Addition of Medium Term Scheduling
	Multitasking in Mobile Systems
	Context Switch
	Operations on Processes
	Process Creation
	A Tree of Processes in Linux
	Process Creation (Cont.)
	C Program Forking Separate Process
	Creating a Separate Process via Windows API
	Process Termination
	Process Termination
	Multiprocess Architecture – Chrome Browser
	Interprocess Communication
	Communications Models
	Cooperating Processes
	Producer-Consumer Problem
	Bounded-Buffer – Shared-Memory Solution
	Bounded-Buffer – Producer
	Bounded Buffer – Consumer
	Interprocess Communication – Shared Memory
	Interprocess Communication – Message Passing
	Message Passing (Cont.)
	Message Passing (Cont.)
	Direct Communication
	Indirect Communication
	Indirect Communication
	Indirect Communication
	Synchronization
	Synchronization (Cont.)
	Buffering
	Examples of IPC Systems - POSIX
	IPC POSIX Producer
	IPC POSIX Consumer
	Examples of IPC Systems - Mach
	Examples of IPC Systems – Windows
	Local Procedure Calls in Windows
	Communications in Client-Server Systems
	Sockets
	Socket Communication
	Sockets in Java
	Remote Procedure Calls
	Remote Procedure Calls (Cont.)
	Execution of RPC
	Pipes
	Ordinary Pipes
	Named Pipes
	End of Chapter 3

