
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 12: I/O Systems

12.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 13: I/O Systems

 Overview
 I/O Hardware
 Application I/O Interface
 Kernel I/O Subsystem
 Transforming I/O Requests to Hardware Operations
 STREAMS
 Performance

12.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Objectives

 Explore the structure of an operating system’s I/O subsystem

 Discuss the principles of I/O hardware and its complexity

 Provide details of the performance aspects of I/O hardware
and software

12.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Overview

 I/O management is a major component of operating system
design and operation
 Important aspect of computer operation
 I/O devices vary greatly
 Various methods to control them
 Performance management
 New types of devices frequent

 Ports, busses, device controllers connect to various devices
 Device drivers encapsulate device details

 Present uniform device-access interface to I/O subsystem

12.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

I/O Hardware

 Incredible variety of I/O devices
 Storage
 Transmission
 Human-interface

 Common concepts – signals from I/O devices interface with computer
 Port – connection point for device
 Bus - daisy chain or shared direct access

 PCI bus common in PCs and servers, PCI Express (PCIe)
 expansion bus connects relatively slow devices

 Controller (host adapter) – electronics that operate port, bus, device
 Sometimes integrated
 Sometimes separate circuit board (host adapter)
 Contains processor, microcode, private memory, bus controller, etc

– Some talk to per-device controller with bus controller, microcode,
memory, etc

12.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Typical PC Bus Structure

12.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

I/O Hardware (Cont.)

 I/O instructions control devices
 Devices usually have registers where device driver places

commands, addresses, and data to write, or read data from
registers after command execution
 Data-in register, data-out register, status register, control

register
 Typically 1-4 bytes, or FIFO buffer

 Devices have addresses, used by
 Direct I/O instructions
 Memory-mapped I/O

 Device data and command registers mapped to
processor address space

 Especially for large address spaces (graphics)

12.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Device I/O Port Locations on PCs (partial)

12.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Polling
 For each byte of I/O

1. Read busy bit from status register until 0
2. Host sets read or write bit and if write copies data into data-out

register
3. Host sets command-ready bit
4. Controller sets busy bit, executes transfer
5. Controller clears busy bit, error bit, command-ready bit when

transfer done
 Step 1 is busy-wait cycle to wait for I/O from device

 Reasonable if device is fast
 But inefficient if device slow
 CPU switches to other tasks?

 But if miss a cycle data overwritten / lost

12.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interrupts

 Polling can happen in 3 instruction cycles
 Read status, logical-and to extract status bit, branch if not zero
 How to be more efficient if non-zero infrequently?

 CPU Interrupt-request line triggered by I/O device
 Checked by processor after each instruction

 Interrupt handler receives interrupts
 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler
 Context switch at start and end
 Based on priority
 Some nonmaskable
 Interrupt chaining if more than one device at same interrupt

number

12.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interrupt-Driven I/O Cycle

12.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Intel Pentium Processor Event-Vector Table

12.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Interrupts (Cont.)

 Interrupt mechanism also used for exceptions
 Terminate process, crash system due to hardware error

 Page fault executes when memory access error
 System call executes via trap to trigger kernel to execute

request
 Multi-CPU systems can process interrupts concurrently

 If operating system designed to handle it
 Used for time-sensitive processing, frequent, must be fast

12.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Direct Memory Access
 Used to avoid programmed I/O (one byte at a time) for large data

movement
 Requires DMA controller
 Bypasses CPU to transfer data directly between I/O device and

memory

 OS writes DMA command block into memory
 Source and destination addresses
 Read or write mode
 Count of bytes
 Writes location of command block to DMA controller
 Bus mastering of DMA controller – grabs bus from CPU

 Cycle stealing from CPU but still much more efficient
 When done, interrupts to signal completion

 Version that is aware of virtual addresses can be even more efficient -
DVMA

12.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Six Step Process to Perform DMA Transfer

12.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes
 Device-driver layer hides differences among I/O controllers from kernel
 New devices talking already-implemented protocols need no extra

work
 Each OS has its own I/O subsystem structures and device driver

frameworks
 Devices vary in many dimensions

 Character-stream or block
 Sequential or random-access
 Synchronous or asynchronous (or both)
 Sharable or dedicated
 Speed of operation
 read-write, read only, or write only

12.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

A Kernel I/O Structure

12.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Characteristics of I/O Devices

12.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Characteristics of I/O Devices (Cont.)

 Subtleties of devices handled by device drivers
 Broadly I/O devices can be grouped by the OS into

 Block I/O
 Character I/O (Stream)
 Memory-mapped file access
 Network sockets

 For direct manipulation of I/O device specific characteristics,
usually an escape / back door
 Unix ioctl() call to send arbitrary bits to a device control

register and data to device data register

12.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Block and Character Devices

 Block devices include disk drives
 Commands include read, write, seek
 Raw I/O, direct I/O, or file-system access
 Memory-mapped file access possible

 File mapped to virtual memory and clusters brought via
demand paging

 DMA
 Character devices include keyboards, mice, serial ports

 Commands include get(), put()
 Libraries layered on top allow line editing

12.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Network Devices

 Varying enough from block and character to have own
interface

 Linux, Unix, Windows and many others include socket
interface
 Separates network protocol from network operation
 Includes select() functionality

 Approaches vary widely (pipes, FIFOs, streams, queues,
mailboxes)

12.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Clocks and Timers

 Provide current time, elapsed time, timer
 Normal resolution about 1/60 second
 Some systems provide higher-resolution timers
 Programmable interval timer used for timings, periodic

interrupts
 ioctl() (on UNIX) covers odd aspects of I/O such as

clocks and timers

12.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Nonblocking and Asynchronous I/O

 Blocking - process suspended until I/O completed
 Easy to use and understand
 Insufficient for some needs

 Nonblocking - I/O call returns as much as available
 User interface, data copy (buffered I/O)
 Implemented via multi-threading
 Returns quickly with count of bytes read or written
 select() to find if data ready then read() or write()

to transfer
 Asynchronous - process runs while I/O executes

 Difficult to use
 I/O subsystem signals process when I/O completed

12.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Two I/O Methods

Synchronous Asynchronous

12.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Vectored I/O

 Vectored I/O allows one system call to perform multiple I/O
operations

 For example, Unix readve() accepts a vector of multiple
buffers to read into or write from

 This scatter-gather method better than multiple individual I/O
calls
 Decreases context switching and system call overhead
 Some versions provide atomicity

 Avoid for example worry about multiple threads
changing data as reads / writes occurring

12.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Kernel I/O Subsystem
 Scheduling

 Some I/O request ordering via per-device queue
 Some OSs try fairness
 Some implement Quality Of Service (i.e. IPQOS)

 Buffering - store data in memory while transferring between devices
 To cope with device speed mismatch
 To cope with device transfer size mismatch
 To maintain “copy semantics”
 Double buffering – two copies of the data

 Kernel and user
 Varying sizes
 Full / being processed and not-full / being used
 Copy-on-write can be used for efficiency in some cases

12.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Device-status Table

12.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Sun Enterprise 6000 Device-Transfer Rates

12.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Kernel I/O Subsystem

 Caching - faster device holding copy of data
 Always just a copy
 Key to performance
 Sometimes combined with buffering

 Spooling - hold output for a device
 If device can serve only one request at a time
 i.e., Printing

 Device reservation - provides exclusive access to a device
 System calls for allocation and de-allocation
 Watch out for deadlock

12.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Error Handling

 OS can recover from disk read, device unavailable, transient
write failures
 Retry a read or write, for example
 Some systems more advanced – Solaris FMA, AIX

 Track error frequencies, stop using device with
increasing frequency of retry-able errors

 Most return an error number or code when I/O request fails
 System error logs hold problem reports

12.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

I/O Protection

 User process may accidentally or purposefully attempt to
disrupt normal operation via illegal I/O instructions
 All I/O instructions defined to be privileged
 I/O must be performed via system calls

Memory-mapped and I/O port memory locations must
be protected too

12.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Use of a System Call to Perform I/O

12.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Kernel Data Structures

 Kernel keeps state info for I/O components, including open file
tables, network connections, character device state

 Many, many complex data structures to track buffers, memory
allocation, “dirty” blocks

 Some use object-oriented methods and message passing to
implement I/O
 Windows uses message passing

Message with I/O information passed from user mode
into kernel

Message modified as it flows through to device driver
and back to process

 Pros / cons?

12.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

UNIX I/O Kernel Structure

12.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Power Management
 Not strictly domain of I/O, but much is I/O related
 Computers and devices use electricity, generate heat, frequently

require cooling
 OSes can help manage and improve use

 Cloud computing environments move virtual machines
between servers
 Can end up evacuating whole systems and shutting them

down
 Mobile computing has power management as first class OS

aspect

12.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Power Management (Cont.)

 For example, Android implements
 Component-level power management

 Understands relationship between components
 Build device tree representing physical device topology
 System bus -> I/O subsystem -> {flash, USB storage}
 Device driver tracks state of device, whether in use
 Unused component – turn it off
 All devices in tree branch unused – turn off branch

 Wake locks – like other locks but prevent sleep of device when lock
is held

 Power collapse – put a device into very deep sleep
 Marginal power use
 Only awake enough to respond to external stimuli (button

press, incoming call)

12.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

I/O Requests to Hardware Operations

 Consider reading a file from disk for a process:
 Determine device holding file
 Translate name to device representation
 Physically read data from disk into buffer
 Make data available to requesting process
 Return control to process

12.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Life Cycle of An I/O Request

12.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

STREAMS

 STREAM – a full-duplex communication channel between a
user-level process and a device in Unix System V and beyond

 A STREAM consists of:
 STREAM head interfaces with the user process
 driver end interfaces with the device
 zero or more STREAM modules between them

 Each module contains a read queue and a write queue

 Message passing is used to communicate between queues
 Flow control option to indicate available or busy

 Asynchronous internally, synchronous where user process
communicates with stream head

12.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

The STREAMS Structure

12.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Performance

 I/O a major factor in system performance:
 Demands CPU to execute device driver, kernel I/O

code
 Context switches due to interrupts
 Data copying
 Network traffic especially stressful

12.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Intercomputer Communications

12.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Improving Performance

 Reduce number of context switches

 Reduce data copying

 Reduce interrupts by using large transfers, smart controllers,
polling

 Use DMA

 Use smarter hardware devices

 Balance CPU, memory, bus, and I/O performance for highest
throughput

 Move user-mode processes / daemons to kernel threads

12.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Device-Functionality Progression

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

End of Chapter 13

	Chapter 12: I/O Systems
	Chapter 13: I/O Systems
	Objectives
	Overview
	I/O Hardware
	A Typical PC Bus Structure
	I/O Hardware (Cont.)
	Device I/O Port Locations on PCs (partial)
	Polling
	Interrupts
	Interrupt-Driven I/O Cycle
	Intel Pentium Processor Event-Vector Table
	Interrupts (Cont.)
	Direct Memory Access
	Six Step Process to Perform DMA Transfer
	Application I/O Interface
	A Kernel I/O Structure
	Characteristics of I/O Devices
	Characteristics of I/O Devices (Cont.)
	Block and Character Devices
	Network Devices
	Clocks and Timers
	Nonblocking and Asynchronous I/O
	Two I/O Methods
	Vectored I/O
	Kernel I/O Subsystem
	Device-status Table
	Sun Enterprise 6000 Device-Transfer Rates
	Kernel I/O Subsystem
	Error Handling
	I/O Protection
	Use of a System Call to Perform I/O
	Kernel Data Structures
	UNIX I/O Kernel Structure
	Power Management
	Power Management (Cont.)
	I/O Requests to Hardware Operations
	Life Cycle of An I/O Request
	STREAMS
	The STREAMS Structure
	Performance
	Intercomputer Communications
	Improving Performance
	Device-Functionality Progression
	End of Chapter 13

