Appendix A: FreeBSD

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

=

-
s

“%7’ Module A: The FreeBSD System

UNIX History

Design Principles
Programmer Interface

User Interface

Process Management
Memory Management

File System

I/O System

Interprocess Communication

Operating System Concepts Essentials — 2" Edition a.2 Silberschatz, Galvin and Gagne ©2013

r & UNIX History

m First developed in 1969 by Ken Thompson and Dennis Ritchie of the
Research Group at Bell Laboratories; incorporated features of other
operating systems, especially MULTICS

® The third version was written in C, which was developed at Bell Labs
specifically to support UNIX

® The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley (Berkeley
Software Distributions - BSD)

e 4BSD UNIX resulted from DARPA funding to develop a standard
UNIX system for government use

e Developed for the VAX, 4.3BSD is one of the most influential
versions, and has been ported to many other platforms

m Several standardization projects seek to consolidate the variant
flavors of UNIX leading to one programming interface to UNIX

A

X
- 2 | \

& /‘%; M
7 ";‘(" |

A AR

Operating System Concepts Essentials — 2" Edition a.3 Silberschatz, Galvin and Gagne ©2013

A

> & History of UNIX Versions

A\

1969 USG/USDL/ATTIS First Edition Belf Labs Berkley
DSG/USO/USL | Research Software
1973 Fifth Edition Distributions

1976 Sixth Edition \PDP-H
1977 PWB MERT CB UNIX 1BSD

1978 | UNIX/RT Seventh Edition}—_ gy AX 2BSD
T———3BSD
1979
3.0 4.0BSD
1980 |
8.0.1 4.1BSD
1981 4.0.1 [\
4.1aBSD
1982 5|.0 System IIl e YSTSD
1983 5.2 SystemV [XENIX 3] Edlty | “'9BSD

- \[Sysemv S8 %ﬁﬂ]
Release 2 /

1985 /,

1986 = SunOS 3 =
Ninth /|4.GBSD--.__

1987 [Chorus] ggfé:;“e\g Edition 2.10BSD

XENIX 5| L

1988 TR Tenth| [4.38SD

1089 L System V oS Edition Tarlloe

- V3 Release 4 Plan9| 4.38SD

Reno

1991

1992 Solaris l.48sD

1003 | | ! , } 1)

Operating System Concepts Essentials — 2nd Edition a.4 Silberschatz, Galvin and Gagne ©2013

> o Early Advantages of UNIX

® Written in a high-level language
® Distributed in source form

m Provided powerful operating-system primitives on an inexpensive
platform

m Small size, modular, clean design

Operating System Concepts Essentials — 2" Edition a.5 Silberschatz, Galvin and Gagne ©2013

o
s m.mvnl
-

& UNIX Design Principles

Designed to be a time-sharing system

Has a simple standard user interface (shell) that can be replaced

File system with multilevel tree-structured directories

Files are supported by the kernel as unstructured sequences of bytes

Supports multiple processes; a process can easily create new
processes

®m High priority given to making system interactive, and providing facilities
for program development

.~ A ’l
»
W
“l AN

Operating System Concepts Essentials — 2nd Edition a.6 Silberschatz, Galvin and Gagne ©2013

& Programmer Interface

Like most computer systems, UNIX consists of two separable parts:

m Kernel: everything below the system-call interface and above the
physical hardware

e Provides file system, CPU scheduling, memory management,
and other OS functions through system calls

m Systems programs: use the kernel-supported system calls to
provide useful functions, such as compilation and file manipulation

- - TS\ ‘l
4 “\

Wy B
“l 2,

Operating System Concepts Essentials — 2nd Edition a7 Silberschatz, Galvin and Gagne ©2013

o ww'nj

r & 4.4BSD Layer Structure

(the users)

shells and commands

compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block I/O page replacement

character |/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers | memory controllers
terminals disks and tapes physical memory

Operating System Concepts Essentials — 2" Edition a.8 Silberschatz, Galvin and Gagne ©2013

&v—z System Calls

m System calls define the programmer interface to UNIX

m The set of systems programs commonly available defines the user
interface

® The programmer and user interface define the context that the kernel
must support

B Roughly three categories of system calls in UNIX

e File manipulation (same system calls also support device
manipulation)

e Process control
e Information manipulation

- - TS\ ‘l
4 “\

Wy B
“l 2,

Operating System Concepts Essentials — 2nd Edition a.9 Silberschatz, Galvin and Gagne ©2013

& File Manipulation

m A file is a sequence of bytes; the kernel does not impose a structure
on files

m Files are organized in tree-structured directories
m Directories are files that contain information on how to find other files

m Path name: identifies a file by specifying a path through the directory
structure to the file

e Absolute path names start at root of file system
e Relative path names start at the current directory

m System calls for basic file manipulation: create, open, read,
write, close, unlink, trunc

L Ay
Operating System Concepts Essentials — 24 Edition a.10 Silberschatz, Galvin and Gagne ©2013

emuni)

EAOCD,
@@
[o (e
Ill,r lib
)
user av L
T troff

=
0001
5/\3

Operating System Concepts Essentials — 2" Edition a.ll Silberschatz, Galvin and Gagne ©2013

y

o)
2 Process Control

®m A process is a program in execution.
B Processes are identified by their process identifier, an integer
B Process control system calls

e Tork creates a new process

e execve is used after a fork to replace on of the two processes’s
virtual memory space with a new program

e exit terminates a process

e A parent may wait for a child process to terminate; wait
provides the process id of a terminated child so that the parent
can tell which child terminated

e walt3 allows the parent to collect performance statistics about
the child

m A zombie process results when the parent of a defunct child process
exits before the terminated child.

)
L.
WS

43

Operating System Concepts Essentials — 24 Edition a.12 Silberschatz, Galvin and Gagne ©2013

=

“%7 lllustration of Process Control Calls

shell process parent process shell process
fork wait >

child process zombie process

execve |Program executes _
program exit

l

Operating System Concepts Essentials — 2nd Edition a.13 Silberschatz, Galvin and Gagne ©2013

> & Process Control (Cont.)

B Processes communicate via pipes; queues of bytes between two
processes that are accessed by a file descriptor

m All user processes are descendants of one original process, init

®m init forks a getty process: initializes terminal line parameters and
passes the user’s login name to login

e login sets the numeric user identifier of the process to that of
the user

e executes a shell which forks subprocesses for user commands

.~ 1)
\) 'ﬁi}r‘ij’\:}
.
WS
“ ABX

Operating System Concepts Essentials — 24 Edition a.14 Silberschatz, Galvin and Gagne ©2013

=

el
o Process Control (Cont.)

| SH N

m setuid bit sets the effective user identifier of the process to the user
identifier of the owner of the file, and leaves the real user identifier as
it was

m setuid scheme allows certain processes to have more than ordinary
privileges while still being executable by ordinary users

Operating System Concepts Essentials — 24 Edition a.15 Silberschatz, Galvin and Gagne ©2013

S Signals

m Facility for handling exceptional conditions similar to software
interrupts

m The interrupt signal, SIGINT, is used to stop a command before that
command completes (usually produced by *C)

B Signal use has expanded beyond dealing with exceptional events

e Start and stop subprocesses on demand

e SIGWINCH informs a process that the window in which output is
being displayed has changed size

e Deliver urgent data from network connections

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.16

=

el
g5 Process Groups

- N

B Set of related processes that cooperate to accomplish a common task

® Only one process group may use a terminal device for I/O at any time
e The foreground job has the attention of the user on the terminal

e Background jobs — nonattached jobs that perform their function
without user interaction

B Access to the terminal is controlled by process group signals

7
W
“l AN

Operating System Concepts Essentials — 24 Edition a.l7 Silberschatz, Galvin and Gagne ©2013

=
- mﬂ's-.l

. Process Groups (Cont.)

m Each job inherits a controlling terminal from its parent

e If the process group of the controlling terminal matches the group
of a process, that process is in the foreground

e SIGTTINor SIGTTOU freezes a background process that attempts
to perform 1/O; if the user foregrounds that process, SIGCONT

indicates that the process can now perform 1/O
e SIGSTOP freezes a foreground process

£ ~ TS\ ‘l
4 <
s
“l 2,

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.18

- Information Manipulation

B System calls to set and return an interval timer:
getitmer/setitmer

m Calls to set and return the current time:
gettimeofday/settimeofday

B Processes can ask for
e their process identifier: getpid
e their group identifier: getgid

e the name of the machine on which they are executing:
gethostname

4 '\. A Al |
2
f i g
WS
“l A%

Operating System Concepts Essentials — 24 Edition a.19 Silberschatz, Galvin and Gagne ©2013

=

o) - '
o Library Routines

| SRS

® The system-call interface to UNIX is supported and augmented by a
large collection of library routines

m Header files provide the definition of complex data structures used in
system calls

m Additional library support is provided for mathematical functions,
network access, data conversion, etc.

> '\) A
£ ﬁfss}@\\{s‘l
S
>
7 WS
“l A%

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.20

& User Interface

B Programmers and users mainly deal with already existing systems
programs: the needed system calls are embedded within the program
and do not need to be obvious to the user.

B The most common systems programs are file or directory oriented
e Directory: mkdir, rmdir, cd, pwd
e File: Is, cp, mv, rm

m Other programs relate to editors (e.g., emacs, Vi) text formatters
(e.g., troff, TEX), and other activities

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.2l

& Shells and Commands

m Shell — the user process which executes programs (also called
command interpreter)

B Called a shell, because it surrounds the kernel

m The shell indicates its readiness to accept another command by
typing a prompt, and the user types a command on a single line

m A typical command is an executable binary object file

® The shell travels through the search path to find the command file,
which is then loaded and executed

® The directories /bin and Zusr/bin are almost always in the search
path

« PA!
Operating System Concepts Essentials — 24 Edition a.22 Silberschatz, Galvin and Gagne ©2013

¥
7,

L

“$7/ Shells and Commands (Cont.)

m Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin /usr/ucb/bin /usr/bin)

® The shell usually suspends its own execution until the command
completes

Operating System Concepts Essentials — 24 Edition a.23 Silberschatz, Galvin and Gagne ©2013

& Standard 1/0

B Most processes expect three file descriptors to be open when they
start:

e standard input — program can read what the user types
e standard output — program can send output to user’s screen
e standard error — error output

® Most programs can also accept a file (rather than a terminal) for
standard input and standard output

®m The common shells have a simple syntax for changing what files are
open for the standard I/O streams of a process — I/O redirection

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.24

> o Standard 1/0 Redirection
command meaning of command
% Is > filea direct output of /s to file filea
% pr < filea > fileb input from filea and output to fileb
% Ipr < fileb input from fileb
% % make program > & errs save both standard output and
standard error in a file

> '\) A
£ ﬁfss}@\\{s‘l
S
>
7 WS
“l A%

Operating System Concepts Essentials — 24 Edition a.25 Silberschatz, Galvin and Gagne ©2013

o
A
o L ““’NJ

xw Pipelines, Filters, and Shell Scripts

B Can coalesce individual commands via a vertical bar that tells the
shell to pass the previous command’s output as input to the following
command

% Is | pr | lpr

m Filter — a command such as pr that passes its standard input to its
standard output, performing some processing on it

m Writing a new shell with a different syntax and semantics would
change the user view, but not change the kernel or programmer
interface

m X Window System is a widely accepted iconic interface for UNIX

« PA!
Operating System Concepts Essentials — 24 Edition a.26 Silberschatz, Galvin and Gagne ©2013

& Process Management

B Representation of processes is a major design problem for operating
system

m UNIX is distinct from other systems in that multiple processes can be
created and manipulated with ease

B These processes are represented in UNIX by various control blocks
e Control blocks associated with a process are stored in the kernel

e Information in these control blocks is used by the kernel for
process control and CPU scheduling

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.27

p
¥

ol
P Process Control Blocks

B The most basic data structure associated with processes is the
process structure

® unique process identifier
e scheduling information (e.g., priority)
e pointers to other control blocks

B The virtual address space of a user process is divided into text
(program code), data, and stack segments

m Every process with sharable text has a pointer form its process
structure to a text structure

e always resident in main memory
e records how many processes are using the text segment

e records were the page table for the text segment can be found
on disk when it is swapped

/‘\'.»’
5 4 <
I 8BS

S

Operating System Concepts Essentials — 24 Edition a.28 Silberschatz, Galvin and Gagne ©2013

=

el
o System Data Segment

- N

® Most ordinary work is done in user mode; system calls are performed
in system mode

B The system and user phases of a process never execute
simultaneously

m A kernel stack (rather than the user stack) is used for a process
executing in system mode

m The kernel stack and the user structure together compose the system
data segment for the process

7
W
“l AN

Operating System Concepts Essentials — 24 Edition a.29 Silberschatz, Galvin and Gagne ©2013

- _ (™ FInding parts of a process using
process structure
process ™ user kernel
structure structure stack
system data structure
» stack
data
4
o0 » text
structure
user space

resident tables

Operating System Concepts Essentials — 2" Edition

swappable process image

a.30 Silberschatz, Galvin and Gagne ©2013

=

o) .
“$77 Allocating a New Process Structure

m Fork allocates a new process structure for the child process, and
copies the user structure

e new page table is constructed

e new main memory is allocated for the data and stack segments of
the child process

e copying the user structure preserves open file descriptors, user
and group identifiers, signal handling, etc.

> '\) A
£ ﬁfss}@\\{s‘l
S
>
7 WS
“l A%

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.31

PN
- #\E“"’an
(@

“»77 Allocating a New Process Structure (Cont.)

m vTork does not copy the data and stack to t he new process; the new
process simply shares the page table of the old one

e new user structure and a new process structure are still created

e commonly used by a shell to execute a command and to wait for
its completion

m A parent process uses vfork to produce a child process; the child
uses execve to change its virtual address space, so there is no need
for a copy of the parent

m Using vfork with a large parent process saves CPU time, but can be

dangerous since any memory change occurs in both processes until
execve occurs

B execve creates no new process or user structure; rather the text and
data of the process are replaced

)
L.
WS

43

Operating System Concepts Essentials — 24 Edition a.32 Silberschatz, Galvin and Gagne ©2013

_ a8 W“hl
‘l-/.. :k'r /

A
¥

=

CPU Scheduling

Operating System Concepts Essentials — 2" Edition

Every process has a scheduling priority associated with it; larger
numbers indicate lower priority

Negative feedback in CPU scheduling makes it difficult for a single
process to take all the CPU time

Process aging is employed to prevent starvation

When a process chooses to relinquish the CPU, it goes to sleep on an
event

When that event occurs, the system process that knows about it calls
wakeup with the address corresponding to the event, and all

processes that had done a sleep on the same address are put in the
ready queue to be run

f‘%}& ‘\.\‘]
S’
&’ <
WY
DA

a.33 Silberschatz, Galvin and Gagne ©2013

g.-—%,..f Memory Management

B The initial memory management schemes were constrained in size by
the relatively small memory resources of the PDP machines on which
UNIX was developed.

B Pre 3BSD system use swapping exclusively to handle memory
contention among processes: If there is too much contention,
processes are swapped out until enough memory is available

m Allocation of both main memory and swap space is done first-fit

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Operating System Concepts Essentials — 24 Edition a.34 Silberschatz, Galvin and Gagne ©2013

=

T
o Memory Management (Cont.)

- N

B Sharable text segments do not need to be swapped; results in less
swap traffic and reduces the amount of main memory required for
multiple processes using the same text segment.

® The scheduler process (or swapper) decides which processes to swap
in or out, considering such factors as time idle, time in or out of main
memory, size, etc.

4 '\. A Al |
2
f i g
WS
“l A%

Operating System Concepts Essentials — 24 Edition a.35 Silberschatz, Galvin and Gagne ©2013

S Paging

m Berkeley UNIX systems depend primarily on paging for memory-
contention management, and depend only secondarily on swapping.

B Demand paging — When a process needs a page and the page is not
there, a page fault tot he kernel occurs, a frame of main memory is
allocated, and the proper disk page is read into the frame.

B A pagedaemon process uses a modified second-chance page-
replacement algorithm to keep enough free frames to support the
executing processes.

m If the scheduler decides that the paging system is overloaded,
processes will be swapped out whole until the overload is relieved.

Operating System Concepts Essentials — 24 Edition a.36 Silberschatz, Galvin and Gagne ©2013

=

-
s

g R

o File System

-

® The UNIX file system supports two main objects: files and directories.

m Directories are just files with a special format, so the representation of
a file is the basic UNIX concept.

Operating System Concepts Essentials — 24 Edition a.37 Silberschatz, Galvin and Gagne ©2013

& Blocks and Fragments

® Most of the file system is taken up by data blocks

m 4.2BSD uses two block sized for files which have no indirect blocks:

e All the blocks of a file are of a large block size (such as 8K), except
the last

e The last block is an appropriate multiple of a smaller fragment size
(i.e., 1024) to fill out the file

e Thus, a file of size 18,000 bytes would have two 8K blocks and
one 2K fragment (which would not be filled completely)

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Operating System Concepts Essentials — 24 Edition a.38 Silberschatz, Galvin and Gagne ©2013

“$7/ Blocks and Fragments (Cont.)

m The block and fragment sizes are set during file-system creation
according to the intended use of the file system:

e If many small files are expected, the fragment size should be small

e If repeated transfers of large files are expected, the basic block
size should be large

B The maximum block-to-fragment ratio is 8 : 1; the minimum block size
Is 4K (typical choices are 4096 : 512 and 8192 : 1024)

£ ~ TS\ ‘l
4 <

s
“l 2,

Operating System Concepts Essentials — 24 Edition a.39 Silberschatz, Galvin and Gagne ©2013

& Inodes

m Afileis represented by an inode — a record that stores information
about a specific file on the disk

B The inode also contains 15 pointer to the disk blocks containing the
file’s data contents

e First 12 point to direct blocks
e Next three point to indirect blocks

» First indirect block pointer is the address of a single indirect
block — an index block containing the addresses of blocks that
do contain data

» Second is a double-indirect-block pointer, the address of a
block that contains the addresses of blocks that contain pointer
to the actual data blocks.

» A triple indirect pointer is not needed; files with as many as
232 bytes will use only double indirection

Operating System Concepts Essentials — 24 Edition a.40 Silberschatz, Galvin and Gagne ©2013

& Directories

B The inode type field distinguishes between plain files and directories

m Directory entries are of variable length; each entry contains first the
length of the entry, then the file name and the inode number

B The user refers to a file by a path name,whereas the file system uses
the inode as its definition of a file

e The kernel has to map the supplied user path name to an inode

e Directories are used for this mapping

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Operating System Concepts Essentials — 24 Edition a.4l Silberschatz, Galvin and Gagne ©2013

55 Directories (Cont.)

m First determine the starting directory:
e If the first character is “/”, the starting directory is the root directory

e For any other starting character, the starting directory is the current
directory

m The search process continues until the end of the path name is
reached and the desired inode is returned

® Once the inode is found, a file structure is allocated to point to the
inode

m 4.3BSD improved file system performance by adding a directory name
cache to hold recent directory-to-inode translations

« PA!
Operating System Concepts Essentials — 24 Edition a.42 Silberschatz, Galvin and Gagne ©2013

S
o cv.’mv..l
-

“$77 Mapping of a File Descriptor to an Inode

m System calls that refer to open files indicate the file is passing a file
descriptor as an argument

m The file descriptor is used by the kernel to index a table of open files
for the current process

m Each entry of the table contains a pointer to a file structure
m This file structure in turn points to the inode
® Since the open file table has a fixed length which is only setable at

boot time, there is a fixed limit on the number of concurrently open files
in a system

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Operating System Concepts Essentials — 24 Edition a.43 Silberschatz, Galvin and Gagne ©2013

| =
.:-‘vm*j
Sy

S\

File-System Control Blocks

data
> blocks
—
read (4, ...) |_‘
l — sync
e o

tables of file-structure in-core Inode

open files table inode list

(per process) list
user space system space disk space

Operating System Concepts Essentials — 2" Edition a.44 Silberschatz, Galvin and Gagne ©2013

& Disk Structures

B The one file system that a user ordinarily sees may actually consist of
several physical file systems, each on a different device

m Partitioning a physical device into multiple file systems has several
benefits

e Different file systems can support different uses

e Reliability is improved

e Can improve efficiency by varying file-system parameters

e Prevents one program form using all available space for a large
file

e Speeds up searches on backup tapes and restoring partitions
from tape

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.45

=

o ww'nj

L Disk Structures (Cont.)

- N

® The root file system is always available on a drive

m Other file systems may be mounted — i.e., integrated into the
directory hierarchy of the root file system

m The following figure illustrates how a directory structure is partitioned
into file systems, which are mapped onto logical devices, which are
partitions of physical devices

4 '\. A Al |
2
f i g
WS
“l A%

Operating System Concepts Essentials — 24 Edition a.46 Silberschatz, Galvin and Gagne ©2013

“$¥’ Mapping File System to Physical Devices

S\,

e R,
L, —

/N TN e = Fool T
B Swap =

—
A\/AN
/—"_\\
= e
N
logical file system file systems logical devices physical devices

Operating System Concepts Essentials — 2" Edition a.47 Silberschatz, Galvin and Gagne ©2013

& Implementations

® The user interface to the file system is simple and well defined,
allowing the implementation of the file system itself to be changed
without significant effect on the user

m For Version 7, the size of inodes doubled, the maximum file and file
system sized increased, and the details of free-list handling and
superblock information changed

B In 4.0BSD, the size of blocks used in the file system was increased
form 512 bytes to 1024 bytes — increased internal fragmentation, but
doubled throughput

m 4.2BSD added the Berkeley Fast File System, which increased speed,
and included new features

e New directory system calls
e truncate calls

e Fast File System found in most implementations of UNIX

Operating System Concepts Essentials — 24 Edition a.48 Silberschatz, Galvin and Gagne ©2013

=

< TN
_—

> & Layout and Allocation Policy

m The kernel uses a <logical device number, inode number> pair to
identify a file

e The logical device number defines the file system involved
e The inodes in the file system are numbered in sequence

m 4.3BSD introduced the cylinder group — allows localization of the
blocks in a file

e Each cylinder group occupies one or more consecutive cylinders of
the disk, so that disk accesses within the cylinder group require
minimal disk head movement

e Every cylinder group has a superblock, a cylinder block, an array
of inodes, and some data blocks

WS

S

; /'%m“ \‘]
¥ LNy i

/ ¢

A AN

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts Essentials — 2" Edition a.49

S5 4.3BSD Cylinder Group

data blocks

superblock

cylinder block

Inodes

data blocks

> ,\ N A
A0
R
4
/ h s >
““ AP

Operating System Concepts Essentials — 2"? Edition a.50 Silberschatz, Galvin and Gagne ©2013

r & /0O System

B The I/O system hides the peculiarities of I1/O devices from the bulk of
the kernel

m Consists of a buffer caching system, general device driver code, and
drivers for specific hardware devices

m Only the device driver knows the peculiarities of a specific device

Operating System Concepts Essentials — 24 Edition a.51 Silberschatz, Galvin and Gagne ©2013

=

=

,,}m.&

“%7/ 4.3 BSD Kernel I/O Structure

system-call interface to the kernel
socket plain file Soelead o raw tty cooked TTY
protocols | file block block interface |jine
system interface | interface discipline
inn?;v:fzgke block-device driver character-device driver
the hardware

Operating System Concepts Essentials — 24 Edition a.52 Silberschatz, Galvin and Gagne ©2013

Block Buffer Cache

Consist of buffer headers, each of which can point to a piece of
physical memory, as well as to a device number and a block number
on the device.

The buffer headers for blocks not currently in use are kept in several
linked lists:

e Buffers recently used, linked in LRU order (LRU list)
e Buffers not recently used, or without valid contents (AGE list)
e EMPTY buffers with no associated physical memory

When a block is wanted from a device, the cache is searched.
If the block is found it is used, and no I/O transfer is necessary.

If it 1s not found, a buffer is chosen from the AGE list, or the LRU list if
AGE is empty.

/‘%‘\ \‘]
-“j‘.g_‘-_,'
7 4 <
4 X

SN

Operating System Concepts Essentials — 24 Edition a.53 Silberschatz, Galvin and Gagne ©2013

=
- mﬂ's-.l

> o Block Buffer Cache (Cont.)

m Buffer cache size effects system performance; if it is large enough,
the percentage of cache hits can be high and the number of actual I/0

transfers low.

m Data written to a disk file are buffered in the cache, and the disk driver
sorts its output queue according to disk address — these actions allow
the disk driver to minimize disk head seeks and to write data at times

optimized for disk rotation.

£ ~ TS\ ‘l
4 <
s
“l 2,

Operating System Concepts Essentials — 24 Edition a.54 Silberschatz, Galvin and Gagne ©2013

& Raw Device Interfaces

m Almost every block device has a character interface, or raw device

interface — unlike the block interface, it bypasses the block buffer
cache.

m Each disk driver maintains a queue of pending transfers.

® Each record in the queue specifies:
e whether it is a read or a write
e a main memory address for the transfer
e adevice address for the transfer
e a transfer size

m |t is simple to map the information from a block buffer to what is
required for this queue.

.~ .’l
\) 'ﬁi}r‘ij’\:}
.
WS
“l AN

Operating System Concepts Essentials — 24 Edition a.55 Silberschatz, Galvin and Gagne ©2013

y

S
o Wﬂn_k
3

2 C-Lists

B Terminal drivers use a character buffering system which involves
keeping small blocks of characters in linked lists.

B A write system call to a terminal enqueues characters on a list for

the device. An initial transfer is started, and interrupts cause
dequeueing of characters and further transfers.

® Inputis similarly interrupt driven

m Itis also possible to have the device driver bypass the canonical
gueue and return characters directly form the raw queue — raw mode
(used by full-screen editors and other programs that need to react to
every keystroke).

)
L.
WS

43

Operating System Concepts Essentials — 24 Edition a.56 Silberschatz, Galvin and Gagne ©2013

=

a’"},ﬁ"'f’ Interprocess Communication

® The pipe is the IPC mechanism most characteristic of UNIX

e Permits a reliable unidirectional byte stream between two
processes

e A benefit of pipes small size is that pipe data are seldom written to
disk; they usually are kept in memory by the normal block buffer

cache

® In 4.3BSD, pipes are implemented as a special case of the socket
mechanism which provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to networking

facilities.

B The socket mechanism can be used by unrelated processes.

/‘\'.»’
5 4 <
I 8BS

S

Operating System Concepts Essentials — 24 Edition a.57 Silberschatz, Galvin and Gagne ©2013

A
¥

o
0 Sockets

m A socket is an endpont of communication.

B An in-use socket it usually bound with an address; the nature of the
address depends on the communication domain of the socket.

B A characteristic property of a domain is that processes communication
in the same domain use the same address format.

®m A single socket can communicate in only one domain — the three
domains currently implemented in 4.3BSD are:

e the UNIX domain (AF_UNIX)
e the Internet domain (AF_INET)
e the XEROX Network Service (NS) domain (AF_NS)

B>

[4 1 <
{ \ vy X
s A3

S

Operating System Concepts Essentials — 24 Edition a.58 Silberschatz, Galvin and Gagne ©2013

S Socket Types

m Stream sockets provide reliable, duplex, sequenced data streams.
Supported in Internet domain by the TCP protocol. In UNIX domain,
pipes are implemented as a pair of communicating stream sockets.

B Sequenced packet sockets provide similar data streams, except that
record boundaries are provided

e Used in XEROX AF_NS protocol

m Datagram sockets transfer messages of variable size in either
direction. Supported in Internet domain by UDP protocol.

B Reliably delivered message sockets transfer messages that are
guaranteed to arrive (Currently unsupported).

m Raw sockets allow direct access by processes to the protocols that
support the other socket types; e.g., in the Internet domain, it is
possible to reach TCP, IP beneath that, or a deeper Ethernet protocol

e Useful for developing new protocols

A

X
- 2 | \

& /‘%; M
7 ";‘(" |

A AR

Operating System Concepts Essentials — 24 Edition a.59 Silberschatz, Galvin and Gagne ©2013

& Socket System Calls

® The socket call creates a socket; takes as arguments specifications
of the communication domain, socket type, and protocol to be used
and returns a small integer called a socket descriptor.

® A name is bound to a socket by the bind system call.
® The connect system call is used to initiate a connection.

m A server process uses socket to create a socket and bind to bind
the well-known address of its service to that socket

e Uses listen to tell the kernel that it is ready to accept
connections from clients

e Uses accept to accept individual connections

e Uses Tork to produce a new process after the accept to service
the client while the original server process continues to listen for
more connections

h

/‘%i\!
Ve

(4

o
A

Operating System Concepts Essentials — 24 Edition a.60 Silberschatz, Galvin and Gagne ©2013

4
.,

o mh-&

- Socket System Calls (Cont.)

B The simplest way to terminate a connection and to destroy the
associated socket is to use the close system call on its socket

descriptor.

B The select system call can be used to multiplex data transfers on
several file descriptors and /or socket descriptors.

Operating System Concepts Essentials — 24 Edition a.61 Silberschatz, Galvin and Gagne ©2013

A
¥

-
g W“nl
-

2 Network Support

® Networking support is one of the most important features in 4.3BSD.

m The socket concept provides the programming mechanism to access
other processes, even across a network.

B Sockets provide an interface to several sets of protocols.
m Almost all current UNIX systems support UUCP.

m 4.3BSD supports the DARPA Internet protocols UDP, TCP, IP, and
ICMP on a wide range of Ethernet, token-ring, and ARPANET
interfaces.

® The 4.3BSD networking implementation, and to a certain extent the
socket facility, is more oriented toward the ARPANET Reference
Model (ARM).

/‘%‘\ \‘]
-“j‘.g_‘-_,'
7 4 <
4 X

SN

Operating System Concepts Essentials — 24 Edition a.62 Silberschatz, Galvin and Gagne ©2013

=

o mmk

bl |
“#”" Network Reference models and Layering

ISO

ARPANET

reference reference f;zeBriD ;xaenr';ﬁle
model model y YEHng
application user programs .
: process and libraries
presentation applications
session transport sockets sock_stream
TCP
host-host protocol
network IP
data link network network Fthernet
hardware interface interfaces driver
network network interlan
hardware hardware controller

Operating System Concepts Essentials — 2" Edition a.63

Silberschatz, Galvin and Gagne ©2013

End of Appendix A

Operating System Concepts Essentials — 2"d Edition Silberschatz, Galvin and Gagne ©2013

	Appendix A: FreeBSD
	Module A: The FreeBSD System
	UNIX History
	History of UNIX Versions
	Early Advantages of UNIX
	UNIX Design Principles
	Programmer Interface
	4.4BSD Layer Structure
	System Calls
	File Manipulation
	Typical UNIX Directory Structure
	Process Control
	Illustration of Process Control Calls
	Process Control (Cont.)
	Process Control (Cont.)
	Signals
	Process Groups
	Process Groups (Cont.)
	Information Manipulation
	Library Routines
	User Interface
	Shells and Commands
	Shells and Commands (Cont.)
	Standard I/O
	Standard I/O Redirection
	Pipelines, Filters, and Shell Scripts
	Process Management
	Process Control Blocks
	System Data Segment
	Finding parts of a process using �process structure
	Allocating a New Process Structure
	Allocating a New Process Structure (Cont.)
	CPU Scheduling
	Memory Management
	Memory Management (Cont.)
	Paging
	File System
	Blocks and Fragments
	Blocks and Fragments (Cont.)
	Inodes
	Directories
	Directories (Cont.)
	Mapping of a File Descriptor to an Inode
	File-System Control Blocks
	Disk Structures
	Disk Structures (Cont.)
	Mapping File System to Physical Devices
	Implementations
	Layout and Allocation Policy
	4.3BSD Cylinder Group
	I/O System
	4.3 BSD Kernel I/O Structure
	Block Buffer Cache
	Block Buffer Cache (Cont.)
	Raw Device Interfaces
	C-Lists
	Interprocess Communication
	Sockets
	Socket Types
	Socket System Calls
	Socket System Calls (Cont.)
	Network Support
	Network Reference models and Layering
	End of Appendix A

