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Objectives 

 To introduce the notion of a thread—a fundamental unit of CPU 
utilization that forms the basis of multithreaded computer 
systems 

 To discuss the APIs for the Pthreads, Windows, and Java 
thread libraries 

 To explore several strategies that provide implicit threading 
 To examine issues related to multithreaded programming 
 To cover operating system support for threads in Windows and 

Linux 
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Motivation 

 Most modern applications are multithreaded 
 Threads run within application 
 Multiple tasks with the application can be implemented by 

separate threads 
 Update display 
 Fetch data 
 Spell checking 
 Answer a network request 

 Process creation is heavy-weight while thread creation is 
light-weight 

 Can simplify code, increase efficiency 
 Kernels are generally multithreaded 
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Multithreaded Server Architecture 
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Benefits 

 Responsiveness – may allow continued execution if part of 
process is blocked, especially important for user interfaces 

 Resource Sharing – threads share resources of process, easier 
than shared memory or message passing 

 Economy – cheaper than process creation, thread switching 
lower overhead than context switching 

 Scalability – process can take advantage of multiprocessor 
architectures 
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Multicore Programming 

 Multicore or multiprocessor systems putting pressure on 
programmers, challenges include: 
 Dividing activities 
 Balance 
 Data splitting 
 Data dependency 
 Testing and debugging 

 Parallelism implies a system can perform more than one task 
simultaneously 

 Concurrency supports more than one task making progress 
 Single processor / core, scheduler providing concurrency 
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Multicore Programming (Cont.) 

 Types of parallelism  
 Data parallelism – distributes subsets of the same data 

across multiple cores, same operation on each 
 Task parallelism – distributing threads across cores, each 

thread performing unique operation 
 As # of threads grows, so does architectural support for threading 

 CPUs have cores as well as hardware threads 
 Consider Oracle SPARC T4 with 8 cores, and 8 hardware 

threads per core 
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Concurrency vs. Parallelism 
 Concurrent execution on single-core system: 

 
 
 

 
 Parallelism on a multi-core system: 
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Single and Multithreaded Processes 
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Amdahl’s Law 

 Identifies performance gains from adding additional cores to an 
application that has both serial and parallel components 

 S is serial portion 
 N processing cores 

 
 

 
 That is, if application is 75% parallel / 25% serial, moving from 1 to 2 

cores results in speedup of 1.6 times 
 As N approaches infinity, speedup approaches 1 / S 
 

Serial portion of an application has disproportionate  effect on 
performance gained by adding additional cores 

 

 But does the law take into account contemporary multicore systems? 
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User Threads and Kernel Threads 

 User threads - management done by user-level threads library 
 Three primary thread libraries: 

  POSIX Pthreads 
  Windows threads 
  Java threads 

 Kernel threads - Supported by the Kernel 
 Examples – virtually all general purpose operating systems, including: 

 Windows  
 Solaris 
 Linux 
 Tru64 UNIX 
 Mac OS X 
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Multithreading Models 

 Many-to-One 
 

 One-to-One 
 

 Many-to-Many 
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Many-to-One 

 Many user-level threads mapped to 
single kernel thread 

 One thread blocking causes all to block 
 Multiple threads may not run in parallel 

on muticore system because only one 
may be in kernel at a time 

 Few systems currently use this model 
 Examples: 

 Solaris Green Threads 
 GNU Portable Threads 
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One-to-One 

 Each user-level thread maps to kernel thread 
 Creating a user-level thread creates a kernel thread 
 More concurrency than many-to-one 
 Number of threads per process sometimes 

restricted due to overhead 
 Examples 

 Windows 
 Linux 
 Solaris 9 and later 
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Many-to-Many Model 
 Allows many user level threads to be 

mapped to many kernel threads 
 Allows the  operating system to create 

a sufficient number of kernel threads 
 Solaris prior to version 9 
 Windows  with the ThreadFiber 

package 
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Two-level Model 

 Similar to M:M, except that it allows a user thread to be 
bound to kernel thread 

 Examples 
 IRIX 
 HP-UX 
 Tru64 UNIX 
 Solaris 8 and earlier 
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Thread Libraries 

 Thread library provides programmer with API for creating 
and managing threads 

 Two primary ways of implementing 
 Library entirely in user space 
 Kernel-level library supported by the OS 
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Pthreads 

 May be provided either as user-level or kernel-level 
 A POSIX standard (IEEE 1003.1c) API for thread creation and 

synchronization 
 Specification, not implementation 
 API specifies behavior of the thread library, implementation is 

up to development of the library 
 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 
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Pthreads Example 
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Pthreads Example (Cont.) 
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Pthreads Code for Joining 10 Threads 
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Windows  Multithreaded C Program 
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Windows  Multithreaded C Program (Cont.) 
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Java Threads 

 Java threads are managed by the JVM 
 Typically implemented using the threads model provided by 

underlying OS 
 Java threads may be created by: 

 
 

 
 
 Extending Thread class 
 Implementing the Runnable interface 
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Java Multithreaded Program 
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Java Multithreaded Program (Cont.) 
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Implicit Threading 

 Growing in popularity as numbers of threads increase, 
program correctness more difficult with explicit threads 

 Creation and management of threads done by compilers and 
run-time libraries rather than programmers 

 Three methods explored 
 Thread Pools 
 OpenMP 
 Grand Central Dispatch 

 Other methods include Microsoft Threading Building Blocks 
(TBB), java.util.concurrent package 
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Thread Pools 

 Create a number of threads in a pool where they await work 
 Advantages: 

 Usually slightly faster to service a request with an existing 
thread than create a new thread 

 Allows the number of threads in the application(s) to be 
bound to the size of the pool 

 Separating task to be performed from mechanics of 
creating task allows different strategies for running task 
 i.e.Tasks could be scheduled to run periodically 

 Windows API supports thread pools: 
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OpenMP 
 Set of compiler directives and an 

API for C, C++, FORTRAN  
 Provides support for parallel 

programming in shared-memory 
environments 

 Identifies parallel regions – 
blocks of code that can run in 
parallel 

#pragma omp parallel  

Create as many threads as there are 
cores 

#pragma omp parallel for 
for(i=0;i<N;i++) {  

    c[i] = a[i] + b[i];  

}  

Run for loop in parallel 
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Grand Central Dispatch 

 Apple technology for Mac OS X and iOS operating systems 
 Extensions to C, C++ languages, API, and run-time library 
 Allows identification of parallel sections 
 Manages most of the details of threading 
 Block is in “^{ }” -   ˆ{ printf("I am a block"); }  

 Blocks placed in dispatch queue 
 Assigned to available thread in thread pool when removed 

from queue 
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Grand Central Dispatch 

 Two types of dispatch queues: 
 serial – blocks removed in FIFO order, queue is per process, 

called main queue 
 Programmers can create additional serial queues within 

program 
 concurrent – removed in FIFO order but several may be 

removed at a time 
 Three system wide queues with priorities low, default, high 
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Threading Issues 

 Semantics of fork() and exec() system calls 

 Signal handling 
 Synchronous and asynchronous 

 Thread cancellation of target thread 
 Asynchronous or deferred 

 Thread-local storage 
 Scheduler Activations 
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Semantics of fork() and exec() 

 Does fork()duplicate only the calling thread or all 
threads? 
 Some UNIXes have two versions of fork 

 exec() usually works as normal – replace the running 
process including all threads 
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Signal Handling 

 Signals are used in UNIX systems to notify a process that a 
particular event has occurred. 

 A signal handler is used to process signals 
1. Signal is generated by particular event 
2. Signal is delivered to a process 
3. Signal is handled by one of two signal handlers: 

1. default 
2. user-defined 

 Every signal has default handler that kernel runs when 
handling signal 
 User-defined signal handler can override default 
 For single-threaded, signal delivered to process 
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Signal Handling (Cont.) 

 Where should a signal be delivered for multi-threaded?  
 Deliver the signal to the thread to which the signal 

applies 
 Deliver the signal to every thread in the process 
 Deliver the signal to certain threads in the process 
 Assign a specific thread to receive all signals for the 

process 
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Thread Cancellation 

 Terminating a thread before it has finished 
 Thread to be canceled is target thread 
 Two general approaches: 

 Asynchronous cancellation terminates the target thread 
immediately 

 Deferred cancellation allows the target thread to periodically 
check if it should be cancelled 

 Pthread code to create and cancel a thread: 
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Thread Cancellation (Cont.) 

 Invoking thread cancellation requests cancellation, but actual 
cancellation depends on thread state 
 
 

 
 
 If thread has cancellation disabled, cancellation remains pending 

until thread enables it 
 Default type is deferred 

 Cancellation only occurs when thread reaches cancellation 
point 
 I.e. pthread_testcancel() 

 Then cleanup handler is invoked 
 On Linux systems, thread cancellation is handled through signals 
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Thread-Local Storage 

 Thread-local storage (TLS) allows each thread to have its 
own copy of data 

 Useful when you do not have control over the thread creation 
process (i.e., when using a thread pool) 

 Different from local variables 
 Local variables visible only during single function 

invocation 
 TLS visible across function invocations 

 Similar to static data 

 TLS is unique to each thread 
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Scheduler Activations 
 Both M:M and Two-level models require 

communication to maintain the appropriate 
number of kernel threads allocated to the 
application 

 Typically use an intermediate data structure 
between user and kernel threads – lightweight 
process (LWP) 
 Appears to be a virtual processor on which 

process can schedule user thread to run 
 Each LWP attached to kernel thread 
 How many LWPs to create? 

 Scheduler activations provide upcalls - a 
communication mechanism from the kernel to 
the upcall handler in the thread library 

 This communication allows an application to 
maintain the correct number kernel threads 
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Operating System Examples 

 Windows Threads 
 Linux Threads 



4.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition 

Windows Threads 

 Windows implements the Windows API – primary API for Win 
98, Win NT, Win 2000, Win XP, and Win 7 

 Implements the one-to-one mapping, kernel-level 
 Each thread contains 

 A thread id 
 Register set representing state of processor 
 Separate user and kernel stacks for when thread runs in 

user mode or kernel mode 
 Private data storage area used by run-time libraries and 

dynamic link libraries (DLLs) 
 The register set, stacks, and private storage area are known as 

the context of the thread 
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Windows Threads (Cont.) 

 The primary data structures of a thread include: 
 ETHREAD (executive thread block) – includes pointer to 

process to which thread belongs and to KTHREAD, in 
kernel space 

 KTHREAD (kernel thread block) – scheduling and 
synchronization info, kernel-mode stack, pointer to TEB, in 
kernel space 

 TEB (thread environment block) – thread id, user-mode 
stack, thread-local storage, in user space 
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Windows Threads Data Structures 
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Linux Threads 

 Linux refers to them as tasks rather than threads 
 Thread creation is done through clone() system call 
 clone() allows a child task to share the address space of the 

parent task (process) 
 Flags control behavior 

 
 
 

 
 

 struct task_struct points to process data structures 
(shared or unique) 
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End of Chapter 4 
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